- Browse by Subject
Browsing by Subject "EPID"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Intensity-modulated radiation therapy dose verification using fluence and portal imaging device(2016) Sumida, Iori; Yamaguchi, Hajime; Das, Indra J.; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Ogawa, Kazuhiko; Department of Radiation Oncology, IU School of MedicinePatient-specific quality assurance for intensity-modulated radiation therapy (IMRT) dose verification is essential. The aim of this study is to provide a new method based on the relative error distribution by comparing the fluence map from the treatment planning system (TPS) and the incident fluence deconvolved from the electronic portal imaging device (EPID) images. This method is validated for 10 head and neck IMRT cases. The fluence map of each beam was exported from the TPS and EPID images of the treatment beams were acquired. Measured EPID images were deconvolved to the incident fluence with proper corrections. The relative error distribution between the TPS fluence map and the incident fluence from the EPID was created. This was also created for a 2D diode array detector. The absolute point dose was measured with an ionization chamber, and the dose distribution was measured by a radiochromic film. In three cases, MLC leaf positions were intentionally changed to create the dose error as much as 5% against the planned dose and our fluence-based method was tested using gamma index. Absolute errors between the predicted dose of 2D diode detector and of our method and measurements were 1.26% ± 0.65% and 0.78% ± 0.81% respectively. The gamma passing rate (3% global / 3 mm) of the TPS was higher than that of the 2D diode detector (p< 0.02), and lower than that of the EPID (p < 0.04). The gamma passing rate (2% global / 2 mm) of the TPS was higher than that of the 2D diode detector, while the gamma passing rate of the TPS was lower than that of EPID (p < 0.02). For three modified plans, the predicted dose errors against the measured dose were 1.10%, 2.14%, and -0.87%. The predicted dose distributions from the EPID were well matched to the measurements. Our fluence-based method provides very accurate dosimetry for IMRT patients. The method is simple and can be adapted to any clinic for complex cases.Item A quality assurance phantom for electronic portal imaging devices(American Association of Physicists in Medicine, 2011) Das, Indra J.; Cao, Minsong; Cheng, Chee-Wai; Misic, Vladimir; Scheuring, Klaus; Schüle, Edmund; Johnstone, Peter A.S.; Radiation Oncology, School of MedicineElectronic portal imaging device (EPID) plays an important role in radiation therapy portal imaging, geometric and dosimetric verification. Consistent image quality and stable radiation response is necessary for proper utilization that requires routine quality assurance (QA). A commercial ‘EPID QC’ phantom weighing 3.8 kg with a dimension of 25 × 25 × 4.8 cm3 is used for EPID QA. This device has five essential tools to measure the geometric accuracy, signal‐to‐noise ratio (SNR), dose linearity, and the low‐ and the high‐contrast resolutions. It is aligned with beam divergence to measure the imaging and geometric parameters in both X and Y directions, and can be used as a baseline check for routine QA. The low‐contrast tool consists of a series of holes with various diameters and depths in an aluminum slab, very similar to the Las Vegas phantom. The high‐resolution contrast tool provides the modulation transfer function (MTF) in both the x‐ and y‐dimensions to measure the focal spot of linear accelerator that is important for imaging and small field dosimetry. The device is tested in different institutions with various amorphous silicon imagers including Elekta, Siemens and Varian units. Images of the QA phantom were acquired at 95.2 cm source‐skin‐distance (SSD) in the range 1–15 MU for a 26 × 26 cm2 field and phantom surface is set normal to the beam direction when gantry is at 0° and 90°. The epidSoft is a software program provided with the EPID QA phantom for analysis of the data. The preliminary results using the phantom on the tested EPID showed very good low‐contrast resolution and high resolution, and an MTF (0.5) in the range of 0.3–0.4 lp/mm. All imagers also exhibit satisfactory geometric accuracy, dose linearity and SNR, and are independent of MU and spatial orientations. The epidSoft maintains an image analysis record and provides a graph of the temporal variations in imaging parameters. In conclusion, this device is simple to use and provides testing on basic and advanced imaging parameters for daily QA on any imager used in clinical practices