- Browse by Subject
Browsing by Subject "ENSO"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent(National Academy of Sciences, 2019-12-26) Permana, Donaldi S.; Thompson, Lonnie G.; Mosley-Thompson, Ellen; Davis, Mary E.; Lin, Ping-Nan; Nicolas, Julien P.; Bolzan, John F.; Bird, Broxton W.; Mikhalenko, Vladimir N.; Gabrielli, Paolo; Zagorodnov, Victor; Mountain, Keith R.; Schotterer, Ulrich; Hanggoro, Wido; Habibie, Muhammad N.; Kaize, Yohanes; Gunawan, Dodo; Setyadi, Gesang; Susanto, Raden D.; Fernández, Alfonso; Mark, Bryan G.; Earth Sciences, School of ScienceThe glaciers near Puncak Jaya in Papua, Indonesia, the highest peak between the Himalayas and the Andes, are the last remaining tropical glaciers in the West Pacific Warm Pool (WPWP). Here, we report the recent, rapid retreat of the glaciers near Puncak Jaya by quantifying the loss of ice coverage and reduction of ice thickness over the last 8 y. Photographs and measurements of a 30-m accumulation stake anchored to bedrock on the summit of one of these glaciers document a rapid pace in the loss of ice cover and a ∼5.4-fold increase in the thinning rate, which was augmented by the strong 2015–2016 El Niño. At the current rate of ice loss, these glaciers will likely disappear within the next decade. To further understand the mechanisms driving the observed retreat of these glaciers, 2 ∼32-m-long ice cores to bedrock recovered in mid-2010 are used to reconstruct the tropical Pacific climate variability over approximately the past half-century on a quasi-interannual timescale. The ice core oxygen isotopic ratios show a significant positive linear trend since 1964 CE (0.018 ± 0.008‰ per year; P < 0.03) and also suggest that the glaciers’ retreat is augmented by El Niño–Southern Oscillation processes, such as convection and warming of the atmosphere and sea surface. These Papua glaciers provide the only tropical records of ice core-derived climate variability for the WPWP.Item Investigating the Effects of Synoptic-Scale Climatic Processes on Local-Scale Hydrology by Combining Multi-Proxy Analyses of Lacustrine Sediments and Instrumental Records(2022-09) Gibson, Derek Keith; Bird, Broxton; Gilhooly, William, III; Jacinthe, Pierre-André; Licht, Kathy; Wang, XianzhongPaleoclimate records from North and South America were used to develop a holistic understanding of global paleo-hydroclimatic drivers across a range of boundary conditions. Here, geophysical analysis of lacustrine sediment stratigraphy at Lago de Tota, Boyaca, Colombia provided evidence for significant lake-level fluctuations through the late Quaternary and produced a record that potentially spans the last 60 ka. Seismic data revealed a series of off-lap and on-lap sequences in the upper ~20 m of sediments that indicated large amplitude changes in lake-level, driven by variability in the mean latitude of the Intertropical Convergence Zone as controlled by insolation- and ocean circulation-driven hemispheric temperature gradients during glacial/stadial and interglacial/interstadial events. In North America, late Holocene flood recurrence in the Midwest and Holocene changes in the mean latitude of the polar front jet stream were investigated through multi-proxy examinations of sediment cores collected from swale lakes in northern Kentucky and southern Indiana, and a glacially formed kettle lake in northern Indiana. These results showed that the midlatitude jet stream was displaced to the south during the late Holocene, which increased the amount of Midwestern precipitation sourced from the northern Pacific and Arctic, especially during prolonged cool conditions. During these cool periods, when atmospheric flow was meridional and a greater amount of precipitation was delivered from the northerly sources, Ohio River flooding increased. During warm conditions, when clockwise mean-state atmospheric circulation advected southerly moisture from the Gulf of Mexico into the Midwest, flooding on the Ohio River decreased. At present, streamflow in the Midwest is demonstrated here to be generally increasing, despite atmospheric conditions typically associated with reduced streamflow in the paleo-record, due in part to increasing precipitation and modern land-use dynamics. Together, these studies demonstrate the sensitivity and vulnerability of local-scale hydrological processes to synoptic climate change.