- Browse by Subject
Browsing by Subject "Drug-drug interactions"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A comprehensive assessment of statin discontinuation among patients who concurrently initiate statins and CYP3A4-inhibitor drugs; a multistate transition model(Wiley, 2023) Donneyong, Macarius M.; Zhu, Yuxi; Zhang, Pengyue; Li, Yiting; Hunold, Katherine M.; Chiang, ChienWei; Unroe, Kathleen; Caterino, Jeffrey M.; Li, Lang; Medicine, School of MedicineAims: The aim of this study was to describe the 1-year direct and indirect transition probabilities to premature discontinuation of statin therapy after concurrently initiating statins and CYP3A4-inhibitor drugs. Methods: A retrospective new-user cohort study design was used to identify (N = 160 828) patients who concurrently initiated CYP3A4 inhibitors (diltiazem, ketoconazole, clarithromycin, others) and CYP3A4-metabolized statins (statin DDI exposed, n = 104 774) vs. other statins (unexposed to statin DDI, n = 56 054) from the MarketScan commercial claims database (2012-2017). The statin DDI exposed and unexposed groups were matched (2:1) through propensity score matching techniques. We applied a multistate transition model to compare the 1-year transition probabilities involving four distinct states (start, adverse drug events [ADEs], discontinuation of CYP3A4-inhibitor drugs, and discontinuation of statin therapy) between those exposed to statin DDIs vs. those unexposed. Statistically significant differences were assessed by comparing the 95% confidence intervals (CIs) of probabilities. Results: After concurrently starting stains and CYP3A, patients exposed to statin DDIs, vs. unexposed, were significantly less likely to discontinue statin therapy (71.4% [95% CI: 71.1, 71.6] vs. 73.3% [95% CI: 72.9, 73.6]) but more likely to experience an ADE (3.4% [95% CI: 3.3, 3.5] vs. 3.2% [95% CI: 3.1, 3.3]) and discontinue with CYP3A4-inhibitor therapy (21.0% [95% CI: 20.8, 21.3] vs. 19.5% [95% CI: 19.2, 19.8]). ADEs did not change these associations because those exposed to statin DDIs, vs. unexposed, were still less likely to discontinue statin therapy but more likely to discontinue CYP3A4-inhibitor therapy after experiencing an ADE. Conclusion: We did not observe any meaningful clinical differences in the probability of premature statin discontinuation between statin users exposed to statin DDIs and those unexposed.Item Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature(BioMed Central, 2016-08-26) Zhang, Yaoyun; Wu, Heng-Yi; Xu, Jun; Wang, Jingqi; Soysal, Ergin; Li, Lang; Xu, Hua; Department of Medicine, IU School of MedicineBACKGROUND: Information about drug-drug interactions (DDIs) supported by scientific evidence is crucial for establishing computational knowledge bases for applications like pharmacovigilance. Since new reports of DDIs are rapidly accumulating in the scientific literature, text-mining techniques for automatic DDI extraction are critical. We propose a novel approach for automated pharmacokinetic (PK) DDI detection that incorporates syntactic and semantic information into graph kernels, to address the problem of sparseness associated with syntactic-structural approaches. First, we used a novel all-path graph kernel using shallow semantic representation of sentences. Next, we statistically integrated fine-granular semantic classes into the dependency and shallow semantic graphs. RESULTS: When evaluated on the PK DDI corpus, our approach significantly outperformed the original all-path graph kernel that is based on dependency structure. Our system that combined dependency graph kernel with semantic classes achieved the best F-scores of 81.94 % for in vivo PK DDIs and 69.34 % for in vitro PK DDIs, respectively. Further, combining shallow semantic graph kernel with semantic classes achieved the highest precisions of 84.88 % for in vivo PK DDIs and 74.83 % for in vitro PK DDIs, respectively. CONCLUSIONS: We presented a graph kernel based approach to combine syntactic and semantic information for extracting pharmacokinetic DDIs from Biomedical Literature. Experimental results showed that our proposed approach could extract PK DDIs from literature effectively, which significantly enhanced the performance of the original all-path graph kernel based on dependency structure.Item Pattern Discovery from High-Order Drug-Drug Interaction Relations(Springer, 2018-06-18) Chiang, Wen-Hao; Schleyer, Titus; Shen, Li; Li, Lang; Ning, Xia; Computer and Information Science, School of ScienceDrug-drug interactions (DDIs) and associated adverse drug reactions (ADRs) represent a significant public health problem in the USA. The research presented in this manuscript tackles the problems of representing, quantifying, discovering, and visualizing patterns from high-order DDIs in a purely data-driven fashion within a unified graph-based framework and via unified convolution-based algorithms. We formulate the problem based on the notions of nondirectional DDI relations (DDI-nd's) and directional DDI relations (DDI-d's), and correspondingly developed weighted complete graphs and hyper-graphlets for their representation, respectively. We also develop a convolutional scheme and its stochastic algorithm SD2ID2S to discover DDI-based drug-drug similarities. Our experimental results demonstrate that such approaches can well capture the patterns of high-order DDIs.