- Browse by Subject
Browsing by Subject "Drainage"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Biological potential and diffusion limitation of methane oxidation in no-till soils(2014-05-21) Prajapati, Prajaya; Wang, Xianzhong; Martin, Pamela; Jacinthe, Pierre-AndréLong term no-till (NT) farming can improve the CH4 oxidation capacity of agricultural lands through creation of a favorable soil environment for methanotrophs and diffusive gas transport. However, limited data is available to evaluate the merit of that contention. Although the potential for biological CH4 oxidation may exist in NT soils, restricted diffusion could limit expression of that potential in fine-textured soils. A study was conducted to assess the CH4 oxidation potential and gaseous diffusivity of soils under plow till (PT) and NT for > 50 years. Intact cores and composite soils samples (0-10 and 10-20 cm) were collected from NT and PT plots located at a well-drained site (Wooster silt loam) and at a poorly-drained (Crosby silt loam) site in Ohio. Adjacent deciduous forest soils were also sampled to determine maximum rate expected in undisturbed soils in the region. Regardless of study sites and soil depth, CH4 oxidation rate (measured at near ambient CH4) and oxidation potential (Vmax, measured at elevated CH4) were 3-4 and 1.5 times higher in NT than in PT soils, respectively. Activity in the NT soils approached (66-80 %) that in the forest soils. Half saturation constants (Km) and threshold for CH4 oxidation (Th) were lower in NT (Km: 100.5 µL CH4 L-1; Th: 0.5 µL CH4 L-1) than in PT soils (Km: 134 µL CH4 L-1; Th: 2.8 µL CH4 L-1) suggesting a greater affinity of long-term NT soils for CH4, and a possible shift in methanotrophic community composition. CH4 oxidation rates were lower in intact soil cores compared to sieved soils, suggesting that CH4 oxidation was limited by diffusion, a factor that could lead to lower field-measured CH4 uptake than suggested by biological oxidation capacity measured in the laboratory. Regardless of soil drainage characteristic, long-term NT resulted in significantly higher (2-3 times) CH4 diffusivity (mean: 2.5 x 10-3 cm2 s-1) than PT (1.5 x 10-3 cm2 s-1), probably due to improved soil aggregation and greater macro-pores volume in NT soils. Overall, these results confirm the positive impact of NT on the restoration of the biological (Vmax, Km and Th) and physical (diffusivity) soil attributes essential for CH4 uptake in croplands. Long-term implementation of NT farming can therefore contribute to the mitigation of CH4 emission from agriculture.Item IMPACT OF PRECIPITATION CHARACTERISTICS IN NUTRIENT AND CARBON DELIVERY TO STREAMS IN ARTIFICIALLY DRAINED LANDSCAPES OF THE MIDWEST(2010-02-02T17:58:27Z) Cuadra, Pilar E.; Vidon, Philippe G.; Jacinthe, Pierre-Andre; Royer, Todd V.Although many studies have investigated the impact of tile drainage on nitrate and pesticide export from cropland to streams, little information is known about the primary hydrological controls of tile flow response to precipitation events and its impact on N, P and C transport in artificially drained landscapes of the US Midwest. This study investigated 1) the relationship between precipitation characteristics and tile flow response at a high temporal resolution during storms; 2) the relative importance of macropore and matrix flow in tile flow and in N, P and C transport to tile drains; and 3) the impact of storm characteristics in N, P and C fluxes/export rates. The study was conducted between April and June 2008, in an agricultural tile drained soybean field, representative of agro-ecosystems of the US Midwest near Indianapolis, IN. For the 8 storms analyzed, results showed that bulk precipitation amount was the best predictor of mean and maximum tile flow, time to peak and runoff ratio. The contribution of macropore flow to total flow increased with precipitation amount, representing between 11% and 50% of total drain flow, with peak contributions between 15% and 74% of flow. For large storms (> 6 cm rainfall), cations data indicated a dilution of groundwater with new water as discharge peaked. Although no clear indication of dilution was observed for smaller storms (< 4 cm rainfall), macropore flow still contributed between 11% and 17% of total flow. For large storms, the transport of dissolved organic carbon (DOC), total phosphorous (TP) and soluble reactive phosphorus (SRP) was found to be regulated mainly by macropore flow while nitrate transport was regulated mainly by matrix flow. For smaller storms, macropore flow dominated DOC and TP transport while SRP and nitrate transport was dominated by matrix flow. These results significantly increase our understanding of the hydrological functioning of tile drained fields and its interaction with N, P and C transport in spring, which is the time of the year during which most water and N losses from tile drains occur in the Midwest.Item Increasing trend of endoscopic drainage utilization for the management of pancreatic pseudocyst: insights from a nationwide database(Korean Society of Gastrointestinal Endoscopy, 2024) Elfert, Khaled; Chamay, Salomon; Dos Santos, Lamin; Mohamed, Mouhand; Beran, Azizullah; Jaber, Fouad; Abosheaishaa, Hazem; Nayudu, Suresh; Ho, Sammy; Medicine, School of MedicineBackground/aims: The pancreatic pseudocyst (PP) is a type of fluid collection that typically develops as a delayed complication of acute pancreatitis. Drainage is indicated for symptomatic patients and/or associated complications, such as infection and bleeding. Drainage modalities include percutaneous, endoscopic, laparoscopic, and open drainage. This study aimed to assess trends in the utilization of different drainage modalities for treating PP from 2016 to 2020. The trends in mortality, mean length of hospital stay, and mean hospitalization costs were also assessed. Methods: The National Inpatient Sample database was used to obtain data. The variables were generated using International Classification of Diseases-10 diagnostic and procedural codes. Results: Endoscopic drainage was the most commonly used drainage modality in 2018-2020, with an increasing trend over time (385 procedures in 2018 to 515 in 2020; p=0.003). This is associated with a decrease in the use of other drainage modalities. A decrease in the hospitalization cost for PP requiring drainage was also noted (29,318 United States dollar [USD] in 2016 to 18,087 USD in 2020, p<0.001). Conclusion: Endoscopic drainage is becoming the most commonly used modality for the treatment of PP in hospitals located in the US. This new trend is associated with decreasing hospitalization costs.Item Sequential drain amylase to guide drain removal following pancreatectomy(Elsevier, 2018-06) Villafane-Ferriol, N.; Van Buren, G.; Mendez-Reyes, J.E.; McElhany, A.L.; Massarweh, N.N.; Silberfein, E.; Hsu, C.; Tran Cao, H.S.; Schmidt, C.; Zyromski, N.; Dillhoff, M.; Roch, A.; Oliva, E.; Smith, A.C.; Zhang, Q.; Fisher, W.E.; Surgery, School of MedicineBACKGROUND: Although used as criterion for early drain removal, postoperative day (POD) 1 drain fluid amylase (DFA) ≤ 5000 U/L has low negative predictive value for clinically relevant postoperative pancreatic fistula (CR-POPF). It was hypothesized that POD3 DFA ≤ 350 could provide further information to guide early drain removal. METHODS: Data from a pancreas surgery consortium database for pancreatoduodenectomy and distal pancreatectomy patients were analyzed retrospectively. Those patients without drains or POD 1 and 3 DFA data were excluded. Patients with POD1 DFA ≤ 5000 were divided into groups based on POD3 DFA: Group A (≤350) and Group B (>350). Operative characteristics and 60-day outcomes were compared using chi-square test. RESULTS: Among 687 patients in the database, all data were available for 380. Fifty-five (14.5%) had a POD1 DFA > 5000. Among 325 with POD1 DFA ≤ 5000, 254 (78.2%) were in Group A and 71 (21.8%) in Group B. Complications (35 (49.3%) vs 87 (34.4%); p = 0.021) and CR-POPF (13 (18.3%) vs 10 (3.9%); p < 0.001) were more frequent in Group B. CONCLUSIONS: In patients with POD1 DFA ≤ 5000, POD3 DFA ≤ 350 may be a practical test to guide safe early drain removal. Further prospective testing may be useful.