Biological potential and diffusion limitation of methane oxidation in no-till soils
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Long term no-till (NT) farming can improve the CH4 oxidation capacity of agricultural lands through creation of a favorable soil environment for methanotrophs and diffusive gas transport. However, limited data is available to evaluate the merit of that contention. Although the potential for biological CH4 oxidation may exist in NT soils, restricted diffusion could limit expression of that potential in fine-textured soils. A study was conducted to assess the CH4 oxidation potential and gaseous diffusivity of soils under plow till (PT) and NT for > 50 years. Intact cores and composite soils samples (0-10 and 10-20 cm) were collected from NT and PT plots located at a well-drained site (Wooster silt loam) and at a poorly-drained (Crosby silt loam) site in Ohio. Adjacent deciduous forest soils were also sampled to determine maximum rate expected in undisturbed soils in the region. Regardless of study sites and soil depth, CH4 oxidation rate (measured at near ambient CH4) and oxidation potential (Vmax, measured at elevated CH4) were 3-4 and 1.5 times higher in NT than in PT soils, respectively. Activity in the NT soils approached (66-80 %) that in the forest soils. Half saturation constants (Km) and threshold for CH4 oxidation (Th) were lower in NT (Km: 100.5 µL CH4 L-1; Th: 0.5 µL CH4 L-1) than in PT soils (Km: 134 µL CH4 L-1; Th: 2.8 µL CH4 L-1) suggesting a greater affinity of long-term NT soils for CH4, and a possible shift in methanotrophic community composition. CH4 oxidation rates were lower in intact soil cores compared to sieved soils, suggesting that CH4 oxidation was limited by diffusion, a factor that could lead to lower field-measured CH4 uptake than suggested by biological oxidation capacity measured in the laboratory. Regardless of soil drainage characteristic, long-term NT resulted in significantly higher (2-3 times) CH4 diffusivity (mean: 2.5 x 10-3 cm2 s-1) than PT (1.5 x 10-3 cm2 s-1), probably due to improved soil aggregation and greater macro-pores volume in NT soils. Overall, these results confirm the positive impact of NT on the restoration of the biological (Vmax, Km and Th) and physical (diffusivity) soil attributes essential for CH4 uptake in croplands. Long-term implementation of NT farming can therefore contribute to the mitigation of CH4 emission from agriculture.