- Browse by Subject
Browsing by Subject "Dental Implants"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Bone regeneration in novel porous titanium implants(2010) Khouja, Naseeba, 1981-; Chu, Tien-Min Gabriel; Brown, David T.; Platt, Jeffery A., 1958-; Blanchard, Steven B.; Levon, John A.The objective of this study was to evaluate the in vivo performance of the novel press-fit dental implant fabricated via electron beam melting (EBM, Southern Methodist Univ.) and compare it to a commercially-available porous-coated press-fit dental implant (Endopore, Innova Corp.). Twelve cylindrical shaped implants 3 mm in diameter x 5 mm long were made by EBM (Southern Methodist Univ.) using Ti6Al4V ELI alloy. Twelve commercial implants (Endopore, Innova Corp.) of the same geometry were used as controls. Samples were implanted in rabbit tibia and retrieved six weeks postoperatively. Six specimens from each implant type were embedded undecalcified, sectioned, and stained with toluidine blue (Sigma) for histomorphometry analysis. Bone-to-implant contact (BIC) was measured. On the six remaining samples from each implant type, the mechanical properties were evaluated by pushout test on a material testing machine. The samples were loaded at a loading rate of 1 mm/min. The pushout strength was measured and the apparent shear stiffness was calculated. The results were analyzed with a paired-t test. The histology shows osteointegration of surrounding bone with both implant types. Bone was found to grow into the porous space between the beads. Both the Endopore (Innova Corp.) and the EBM (Southern Methodist Univ.) showed similar BIC. The mean BIC for the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implant were 35 ± 6% and 32 ± 9%, respectively. It failed to reach statistical significance (p > 0.05). The peak pushout force for Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implants were 198.80 ± 61.29 N and 243.21 ± 69.75 N, respectively. The apparent shear stiffness between bone and implant for the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implants were 577.36 ± 129.99 N/mm; and 584.48 ± 146.63 N/mm, respectively. Neither the peak pushout force nor the apparent shear stiffness of the implants was statistically different between the two groups (p > 0.05). The results suggest that the implants manufactured by EBM (Southern Methodist Univ.) perform equally well as the commercial implant Endopore (Innova Corp.) in this current animal model.Item Characterizing Restorative Dental Treatments of Sjögren's Syndrome Patients Using Electronic Dental Records Data(IOS Press, 2017) Siddiqui, Zasim; Wang, Yue; Makkad, Payal; Thyvalikakath, Thankam; Cariology, Operative Dentistry and Dental Public Health, School of DentistryScant knowledge exists on the type of restorative treatments Sjögren's syndrome patients (SSP) receive in spite of their high dental disease burden due to hyposalivation. Increased adoption of electronic dental records (EDR) could help in leveraging information from these records to assess dental treatment outcomes in SSP. In this study, we evaluated the feasibility of using EDR to characterize the dental treatments SSP received and assess the longevity of implants in these patients. We identified 180 SSP in ten years of patients' data at the Indiana University School of Dentistry clinics. A total of 104 (57.77%) patients received restorative or endodontic treatments. Eleven patients received 23 implants with a survival rate of 87% at 40 months follow-up. We conclude that EDR data could be used for characterizing the treatments received by SSP and for assessing treatment outcomes.Item Effect of HA-coating and HF etching on experemental zirconia implant evaluation using in vivo rabbit model(2010) Huang, Sung-En; Chu, Tien-Min Gabriel; John, Vanchit (Vanchit Kurien), 1965-; Kowolik, Michael J.; Zunt, Susan L., 1951-; Blanchard, Steven B.The objective of this study was to evaluate the in vivo performance of the hydroxyapatite (HA) coating and hydrofluoric acid (HF) etching zirconia (ZrO) implants and to compare the result with titanium (Ti) implants treated in a similar manner. A total of four different implant types were tested in this study. Threaded zirconia implants with HA coating (Test 1) and zirconia implants with HF-treated surfaces (Test 2) were used to compare to the same size of titanium implants treated in identical fashion (control 1 and control 2). All implants measured about 3.5 mm at the thread diameter and 7.0 mm in total length. Each rabbit received two zirconia and two titanium implants treated in the same manner (either HA-coated or HF-etched). The samples were implanted into the rabbit tibias and retrieved at 6 weeks. Upon retrieval, 24 specimens (6 samples for each group) were fixed and dehydrated. The samples were then embedded undecalcified in PMMA for histomorphometry to quantify the bone-to-implant contact (BIC). Another 24 samples were kept in 0.9% saline and were evaluated using removal torque (RT) analysis to assess the strength of the implant-to-bone interface. The histomorphometric examination demonstrated direct bone-to-implant contact for all four groups. HA particle separation from the implants surface was seen in a majority of the HA-coated samples. No signs of inflammation or foreign body reaction were found during examination. Due to the HA particle smear contamination in the ZrO-HA group, no data was collected in this group. The mean BIC at the first three threads of the Ti-HA, Ti-HF and ZrO-HF were 57.78±18.22%, 46.41±14.55% and 47.41±14.05%, respectively. No statistically significant difference was found pair-wise among these three groups. When comparing the BIC data with the machined-surface implants, a statistically significant difference was found between the Ti-HA versus Ti implant group and the Ti-HF versus Ti implant group. The mean bone area (BA) at the first three threads for Ti-HA, Ti-HF and ZrO-HF showed statistically significant difference (p<0.05) between the ZrO-HF and Ti-HA groups, favoring the ZrO-HF group. The value of the peak removal force could only be collected from the Ti-HA group during the removal torque test. The mean RT value for the Ti-HA group was 24.39±2.58 Ncm. When comparing the RT result with our pilot study using machined-surface implants, the Ti-HA group showed statistically significant (p<0.05) higher values than the machined-surface Ti implants. The result of this study proves the in vivo biocompatibility of all four implant types tested. In the three measurable implant groups, the histomorphologic analysis showed comparable osseointegration properties in this animal model.Item Histomorphometric and Biomechanical Analyses of Osseointegration of Four Different Orthodontic Mini Implant Surfaces(2011) Yadav, Sumit; Roberts, W. Eugene, Jr.; Chen, Jie; Katona, Thomas R.; Liu, Sean S.; Huja, Sarandeep S. (Sarandeep Singh), 1965-Objective: To evaluate the osseointegration potential of four different surfaces of mini-implants .We hypothesized that mini-implants surface roughness alters the intrinsic biomechanical properties of the bone integrated to titanium. Materials and Methods: Mini implants and circular discs were made from alloy Ti6Al4V grade 5. On the basis of surface treatment study was divided into 4 groups: Group 1: Machined: no surface treatment, Group 2: Acid etched: with hydrochloric acid, Group 3: Grit Blasted with alumina and Group 4: Grit blasted +Acid etched. Surface roughness parameters (mean surface roughness: Ra and Quadratic Average roughness: Rq) of the four discs from each group were measured by the optical profilometer. Contact angle measurement of 3 discs from each group was done with a Goniometer. Contact angle of liquids with different hydrophobicity and hydrophilicity were measured. 128 mini implants, differing in surface treatment, were placed into the tibias and femurs of 8 adult male New Zealand white rabbits. Biomechanical properties (Removal torque and hardness) measurements and histomorphometric observations were measured. Results: Ra and Rq of groups were: Machined (1.17±0.11, 2.59±0.09) Acid etched (1.82±0.04, 3.17±0.13), Grit blasted (4.83±0.23, 7.04±0.08), Grit blasted + Acid etched (3.64±0.03, 4.95±0.04) respectively. Group 4 had significantly (p=0.000) lower Ra and Rq than Group 3. The interaction between the groups and liquid was significant. Group 4 had significantly lower contact angle measurements (40.4°, 26.9°), both for blood and NaCl when compared to other three groups (p≤0.01). Group 4 had significantly higher torque than Group 3 (Tibia: 13.67>9.07N-cm; Femur: 18.21>14.12N-cm), Group 4 (Tibia: 13.67>9.78N-cm; Femur: 18.21>12.87N-cm), and machined (Tibia: 13.67>4.08N-cm; Femur: 18.21>6.49N-cm). SEM analysis reveals significantly more bone implant gap in machined implant surfaces than treated implant surfaces. Bone to implant contact had significantly higher values for treated mini implant surface than machined surface. Hardness of the bone near the implant bone interface is 20 to 25% less hard than bone 1mm away from it in both Femur and Tibia. Conclusion: Surface roughness and wettability of mini implants influences their biological response. Grit blasted and acid etched mini implants had lowest contact angle for different liquids tested and highest removal torques.Item Miniature Implants for Orthodontic Anchorage(2001) Deguchi, Toru; Garetto, Lawrence P.; Katona, Thomas R.; Hohlt, Thomas R.; Roberts, W. Eugene; Shanks, James C.Anchorage control is fundamental to successful orthodontic treatment. Dental implants can serve as ideal anchorage units because of their stability in bone. Previous studies limit the use of existing implants for anchorage because of their large size. Minimizing the size of the implant would reduce the extent of the surgery and may result in a decreased and less traumatic healing period. The objective of this study was to histomorphometrically analyze the use of miniature implants. A total of 96 miniature implants (1.0 x 5.0 mm; 48 loaded and 48 healing control) were placed in the mandible and maxilla of 8 male dogs. The implants were allowed to heal for three different periods (3, 6, and 12 weeks) followed by 12 weeks of 200 to 300 g of orthodontic force application. Bone specimens containing implants were collected for histomorphometric analysis. The results indicate that clinical rigidity (osseointegration) was achieved by 96.9 percent of the miniature implants. Histomorphometric analysis revealed that the amount of bone contact at the implant-bone interface ranged from 11.3 to 68 percent (mean ± SEM=34.4 ± 4.6 percent) in the healing control groups and from 18.8 to 63 percent (mean=43.l ± 4.0 percent) in the force applied groups in the maxilla. On the other hand, in the mandible, bone-implant contact ranged from 7 to 82 percent (mean=44.1 ± 6.8 percent) in the healing control groups and from 12 to 72 percent (mean=50.7 ± 5.3 percent) in the force applied groups. Results from bone formation rate, mineralizing surface/bone surface and mineral appositional rate showed a significant difference in the 3-week healing control group compared to those in other groups. From these results, we concluded that miniature implants are able to function as rigid osseous anchorage for orthodontics with minimal (less than 3 weeks) healing period. This study was supported by Matsumoto Research fund.