ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Deep Q-learning"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Application of Machine Learning to GPU Optimization, Deep Q-Networks and Computational Fluid Dynamics
    (2025-05) Zigon, Robert J.; Song, Fengguang; Zhu, Luoding; Tuceryan, Mihran; Fang, Shiaofen
    Throughout society today, machine learning has been catapulted to a transformative problem solving approach across various domains, ranging from natural language processing to computer vision to engineering optimization. The fundamental principle is the ability of algorithms to learn patterns and make decisions based on data, rather than relying on explicitly programmed instructions. This dissertation addresses the research question: “How can machine learning techniques be applied to improve computational efficiency and prediction accuracy in high-performance scientific computing tasks, including GPU kernel optimization, Deep Q-Networks, and computational fluid dynamics?” To answer the question, we devised three distinct problems, each of which is orthogonal to the next to represent a wide breadth of exploration. The problems focus on the two paradigms of supervised learning and reinforcement learning.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University