Application of Machine Learning to GPU Optimization, Deep Q-Networks and Computational Fluid Dynamics

Date
2025-05
Language
American English
Embargo Lift Date
Department
Degree
Ph.D.
Degree Year
2025
Department
Computer & Information Science
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Throughout society today, machine learning has been catapulted to a transformative problem solving approach across various domains, ranging from natural language processing to computer vision to engineering optimization. The fundamental principle is the ability of algorithms to learn patterns and make decisions based on data, rather than relying on explicitly programmed instructions. This dissertation addresses the research question: “How can machine learning techniques be applied to improve computational efficiency and prediction accuracy in high-performance scientific computing tasks, including GPU kernel optimization, Deep Q-Networks, and computational fluid dynamics?” To answer the question, we devised three distinct problems, each of which is orthogonal to the next to represent a wide breadth of exploration. The problems focus on the two paradigms of supervised learning and reinforcement learning.

Description
IUI
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}