ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cysteine"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines
    (ACS, 2024) Kim, Hong-Rae; Byun, David P.; Thakur, Kalyani; Ritchie, Jennifer; Xie, Yixin; Holewinski, Ronald; Suazo, Kiall F.; Stevens, Mckayla; Liechty, Hope; Tagirasa, Ravichandra; Jing, Yihang; Andresson, Thorkell; Johnson, Steven M.; Yoo, Euna; Biochemistry and Molecular Biology, School of Medicine
    Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
  • Loading...
    Thumbnail Image
    Item
    Selective arylation of cysteine 237 of rabbit muscle aldolase with 4-chloro-7-nitro-benzo-2-oxa-1, 3-diazole; Affinity labeling of rabbit muscle aldolase with the homologous series w-bromoalkylphosphonic acids
    (1975) Wong, Pierre
  • Loading...
    Thumbnail Image
    Item
    Voltage-gated potassium channel proteins and stereoselective S-nitroso-l-cysteine signaling
    (American Society for Clinical Investigation, 2020-08-13) Gaston, Benjamin; Smith, Laura; Bosch, Jürgen; Seckler, James; Kunze, Diana; Kiselar, Janna; Marozkina, Nadzeya; Hodges, Craig A.; Wintrobe, Patrick; McGee, Kellen; Morozkina, Tatiana S.; Burton, Spencer T.; Lewis, Tristan; Strassmaier, Timothy; Getsy, Paulina; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of Medicine
    S-nitroso-l-cysteine (L-CSNO) behaves as a ligand. Its soluble guanylate cyclase–independent (sGC-independent) effects are stereoselective — that is, not recapitulated by S-nitroso-d-cysteine (D-CSNO) — and are inhibited by chemical congeners. However, candidate L-CSNO receptors have not been identified. Here, we have used 2 complementary affinity chromatography assays — followed by unbiased proteomic analysis — to identify voltage-gated K+ channel (Kv) proteins as binding partners for L-CSNO. Stereoselective L-CSNO–Kv interaction was confirmed structurally and functionally using surface plasmon resonance spectroscopy; hydrogen deuterium exchange; and, in Kv1.1/Kv1.2/Kvβ2-overexpressing cells, patch clamp assays. Remarkably, these sGC-independent L-CSNO effects did not involve S-nitrosylation of Kv proteins. In isolated rat and mouse respiratory control (petrosyl) ganglia, L-CSNO stereoselectively inhibited Kv channel function. Genetic ablation of Kv1.1 prevented this effect. In intact animals, L-CSNO injection at the level of the carotid body dramatically and stereoselectively increased minute ventilation while having no effect on blood pressure; this effect was inhibited by the L-CSNO congener S-methyl-l-cysteine. Kv proteins are physiologically relevant targets of endogenous L-CSNO. This may be a signaling pathway of broad relevance.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University