ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cysteine"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines
    (ACS, 2024) Kim, Hong-Rae; Byun, David P.; Thakur, Kalyani; Ritchie, Jennifer; Xie, Yixin; Holewinski, Ronald; Suazo, Kiall F.; Stevens, Mckayla; Liechty, Hope; Tagirasa, Ravichandra; Jing, Yihang; Andresson, Thorkell; Johnson, Steven M.; Yoo, Euna; Biochemistry and Molecular Biology, School of Medicine
    Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
  • Loading...
    Thumbnail Image
    Item
    Mechanism elucidation of the radical SAM enzyme spore photoproduct lyase (SPL)
    (Elsevier, 2012) Li, Lei; Chemistry and Chemical Biology, School of Science
    Spore photoproduct lyase (SPL) repairs a special thymine dimer 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct or SP at the bacterial early germination phase. SP is the exclusive DNA photo-damage product in bacterial endospores; its generation and swift repair by SPL are responsible for the spores' extremely high UV resistance. The early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair the SP in the absence of light. The research in the past decade further established SPL as a radical SAM enzyme, which utilizes a tri-cysteine CXXXCXXC motif to harbor a [4Fe-4S] cluster. At the 1+ oxidation state, the cluster provides an electron to the S-adenosylmethionine (SAM), which binds to the cluster in a bidentate manner as the fourth and fifth ligands, to reductively cleave the CS bond associated with the sulfonium ion in SAM, generating a reactive 5'-deoxyadenosyl (5'-dA) radical. This 5'-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. SAM is suggested to be regenerated at the end of each catalytic cycle; and only a catalytic amount of SAM is needed in the SPL reaction. The H atom source for the back donation step is suggested to be a cysteine residue (C141 in Bacillus subtilis SPL), and the H-atom transfer reaction leaves a thiyl radical behind on the protein. This thiyl radical thus must participate in the SAM regeneration process; however how the thiyl radical abstracts an H atom from the 5'-dA to regenerate SAM is unknown. This paper reviews and discusses the history and the latest progress in the mechanistic elucidation of SPL. Despite some recent breakthroughs, more questions are raised in the mechanistic understanding of this intriguing DNA repair enzyme. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
  • Loading...
    Thumbnail Image
    Item
    Mechanistic Studies of the Spore Photoproduct Lyase (SPL) via a Single Cysteine Mutation
    (ACS, 2012) Yang, Linlin; Lin, Gengjie; Nelson, Renae S.; Jian, Yajun; Telser, Joshua; Li, Lei; Chemistry and Chemical Biology, School of Science
    5-Thyminyl-5,6-dihydrothymine (also called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is repaired by a radical SAM (S-adenosylmethionine) enzyme, the spore photoproduct lyase (SPL), at the bacterial early germination phase. Our previous studies proved that SPL utilizes the 5'-dA• generated by the SAM cleavage reaction to abstract the H(6proR) atom to initiate the SP repair process. The resulting thymine allylic radical was suggested to take an H atom from an unknown protein source, most likely cysteine 141. Here we show that C141 can be readily alkylated in the native SPL by an iodoacetamide treatment, suggesting that it is accessible to the TpT radical. SP repair by the SPL C141A mutant yields TpTSO(2)(-) and TpT simultaneously from the very beginning of the reaction; no lag phase is observed for TpTSO(2)(-) formation. Should any other protein residue serve as the H donor, its presence would result in TpT being the major product at least for the first enzyme turnover. These observations provide strong evidence to support C141 as the direct H atom donor. Moreover, because of the lack of this intrinsic H donor, the C141A mutant produces TpT via an unprecedented thymine cation radical reduction (proton-coupled electron transfer) process, contrasting to the H atom transfer mechanism in the wild-type (WT) SPL reaction. The C141A mutant repairs SP at a rate that is ~3-fold slower than that of the WT enzyme. Formation of TpTSO(2)(-) and TpT exhibits a V(max) deuterium kinetic isotope effect (KIE) of 1.7 ± 0.2, which is smaller than the (D)V(max) KIE of 2.8 ± 0.3 determined for the WT SPL reaction. These findings suggest that removing the intrinsic H atom donor disturbs the rate-limiting process during enzyme catalysis. As expected, the prereduced C141A mutant supports only ~0.4 turnover, which is in sharp contrast to the >5 turnovers exhibited by the WT SPL reaction, suggesting that the enzyme catalytic cycle (SAM regeneration) is disrupted by this single mutation.
  • Loading...
    Thumbnail Image
    Item
    Selective arylation of cysteine 237 of rabbit muscle aldolase with 4-chloro-7-nitro-benzo-2-oxa-1, 3-diazole; Affinity labeling of rabbit muscle aldolase with the homologous series w-bromoalkylphosphonic acids
    (1975) Wong, Pierre
  • Loading...
    Thumbnail Image
    Item
    Voltage-gated potassium channel proteins and stereoselective S-nitroso-l-cysteine signaling
    (American Society for Clinical Investigation, 2020-08-13) Gaston, Benjamin; Smith, Laura; Bosch, Jürgen; Seckler, James; Kunze, Diana; Kiselar, Janna; Marozkina, Nadzeya; Hodges, Craig A.; Wintrobe, Patrick; McGee, Kellen; Morozkina, Tatiana S.; Burton, Spencer T.; Lewis, Tristan; Strassmaier, Timothy; Getsy, Paulina; Bates, James N.; Lewis, Stephen J.; Pediatrics, School of Medicine
    S-nitroso-l-cysteine (L-CSNO) behaves as a ligand. Its soluble guanylate cyclase–independent (sGC-independent) effects are stereoselective — that is, not recapitulated by S-nitroso-d-cysteine (D-CSNO) — and are inhibited by chemical congeners. However, candidate L-CSNO receptors have not been identified. Here, we have used 2 complementary affinity chromatography assays — followed by unbiased proteomic analysis — to identify voltage-gated K+ channel (Kv) proteins as binding partners for L-CSNO. Stereoselective L-CSNO–Kv interaction was confirmed structurally and functionally using surface plasmon resonance spectroscopy; hydrogen deuterium exchange; and, in Kv1.1/Kv1.2/Kvβ2-overexpressing cells, patch clamp assays. Remarkably, these sGC-independent L-CSNO effects did not involve S-nitrosylation of Kv proteins. In isolated rat and mouse respiratory control (petrosyl) ganglia, L-CSNO stereoselectively inhibited Kv channel function. Genetic ablation of Kv1.1 prevented this effect. In intact animals, L-CSNO injection at the level of the carotid body dramatically and stereoselectively increased minute ventilation while having no effect on blood pressure; this effect was inhibited by the L-CSNO congener S-methyl-l-cysteine. Kv proteins are physiologically relevant targets of endogenous L-CSNO. This may be a signaling pathway of broad relevance.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University