- Browse by Subject
Browsing by Subject "Chlorhexidine"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Antibacterial efficacy of 0.12-percent and 2.0-percent chlorhexidine gluconate at 37˚C and 46˚C against enterococcus faecalis(2010) Thiessen, Craig B.D., 1978-; Vail, Mychel Macapagal, 1969-; Spolnik, Kenneth Jacob, 1950-; Zunt, Susan L., 1951-; Gregory, Richard L.; Legan, Joseph J.The purpose of this study was to investigate the antibacterial efficacy of 0.12-percent and 2.0-percent chlorhexidine gluconate (CHX) on eliminating Enterococcus faecalis from dentinal tubules, and whether this antibacterial effect was enhanced by heat. To date there have been no published articles that describe the heating of 2.0-percent CHX and its antimicrobial efficacy and clinical relevance towards E. faecalis within dentinal tubules in root canal systems. Ninety-five human extracted, single rooted, maxillary, anterior teeth were used to prepare dentin disk specimens. After proper sterilization, a 2.5-mm ISO-sized diameter lumen was prepared, and then the canals were filled with brain-heart infusion (BHI) broth infected with E. faecalis. The BHI was removed and the specimens in equally divided groups were rinsed with sterile saline and filled with saline, or 0.12 percent CHX or 2.0 percent CHX at ambient temperature (24°C) or experimental temperature (46°C) and incubated at oral temperature (37°C) or the experimental temperature (46°C), respectively. The specimens were frozen to -70˚C and pulverized in liquid nitrogen. Serial dilutions were prepared of 1:100 and 1:1000 and spiral plated on BHI agar plates in duplicate. They were incubated, and the number of bacterial colonies was recorded 24 hours later for data analysis. A two-way analysis of variance (ANOVA), with factors for solution, solution temperature, and the solution-by-temperature interaction was used to determine antibacterial efficacy. Pair-wise comparisons between groups were examined for significance using the Fisher’s Protected Least Significant Differences Method. The E. faecalis CFU were log-transformed to satisfy the assumptions required for the ANOVA. The results of this investigation demonstrated no statistically significant difference with the addition of heat to either test irrigation solution regarding the elimination of E. faecalis from dentinal tubules within the root canal system. There was a statistically significant difference in the antibacterial efficacy of CHX against E. faecalis in comparison with the concentration tested. A higher concentration of 2.0-percent CHX demonstrated a significantly higher antibacterial efficacy against E. faecalis compared with 0.12-percent CHX, and likewise with the saline control. It can be concluded that the use of a higher concentration of 2.0-percent CHX is advantageous as a final irrigation solution after copious amounts of NaOCl and EDTA have been utilized for effective antimicrobial efficacy and substantivity.Item Chlorhexidine as a recurrent marginal caries inhibitor : a televison microscope evaluation(1978) Gleiser, Rogerio, 1952-This study investigated the effectiveness of chlorhexidine and a cavity varnish in reducing the incidence of recurrent caries around amalgam restorations in vitro. This was accomplished by: (1) inserting amalgam restorations into Class V preparations to which a varnish (Copalite), a 1 percent chlorhcxidine gluconate solution, or chlorhexidine followed by the varnish were applied; (2) exposing the teeth with the restorations to a severe ciogenic challenge; and (3) measuring with the television microscope instrumentation the changes which occurred in the width of the gap between the amalgam and the cavity wall. Four groups of 12 intact bicuspids, previously extracted for orthodontic purposes and mounted in squares of self-curing resin, were used. Upon completion of the Class V Cavity preparations, the three treatments performed, and the cavity restored with amalgam, the teeth were exposed to a cariogenic challenge for six weeks, with a weekly change in the "artificial plaque" created by Streptococcus mutans. A group of teeth which received no treatment before the restoration was inserted served as controls. The television microscope measurement instrumentation which allowed a magnification of 250 X and measurements as small as one micron were used to identify and measure the width of the gap between the amalgam and the cavity wall before and after the teeth were exposed to the cariogenic challenge. The conclusions of this study were: (1) The use of chlorhexidine or a varnish or a combination of both produced a significantly smaller enlargement of the amalgam-cavity wall gap width when no treatment was performed before the insertion of the restoration. (2) Chlorhcxidine by itself or in combination with the varnish did not prove to be more effective in preventing the enlargement of the gap than the varnish. (3) The experimental model in which a cariogenic challenge was developed produced decalcifications that closely resembled those produced in the mouth situation. (4) The television microscope measurement instrumentation accurately measured the amalgam-cavity wall gap widths. (5) The evaluation did not permit a correlation between the increase in gap width and the carious process. It is the author's suggestion that for this purpose, future studies should be performed with histologic evaluations of enamel ground sections as one of the evaluation methods. (6) Before recommending the clinical use of chlorhcxidine as a recurrent marginal caries inhibitor, further research is necessary.Item Design of the Prevention of Adult Caries Study (PACS): A randomized clinical trial assessing the effect of a chlorhexidine dental coating for the prevention of adult caries(BMC, 2010-10-05) Vollmer, William M.; Papas, Athena S.; Bader, James D.; Maupomé, Gerardo; Gullion, Christina M.; Hollis, Jack F.; Snyder, John J.; Fellows, Jeffrey L. Fellows; Laws, Reesa L.; White, B. Alexander; PACS Collaborative Research Group; Social and Behavioral Sciences, School of Public HealthBackground Dental caries is one of the primary causes of tooth loss among adults. It is estimated to affect a majority of Americans aged 55 and older, with a disproportionately higher burden in disadvantaged populations. Although a number of treatments are currently in use for caries prevention in adults, evidence for their efficacy and effectiveness is limited. Methods/Design The Prevention of Adult Caries Study (PACS) is a multicenter, placebo-controlled, double-blind, randomized clinical trial of the efficacy of a chlorhexidine (10% w/v) dental coating in preventing adult caries. Participants (n = 983) were recruited from four different dental delivery systems serving four diverse communities, including one American Indian population, and were randomized to receive either chlorhexidine or a placebo treatment. The primary outcome is the net caries increment (including non-cavitated lesions) from baseline to 13 months of follow-up. A cost-effectiveness analysis also will be considered. Discussion This new dental treatment, if efficacious and approved for use by the Food and Drug Administration (FDA), would become a new in-office, anti-microbial agent for the prevention of adult caries in the United States.Item Effect of a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant on oral biofilm(J-STAGE, 2021-05) Feitosa, Sabrina; Carreiro, Adriana F. P.; Martins, Victor M.; Platt, Jeffrey A.; Duarte, Simone; Biomedical Sciences and Comprehensive Care, School of DentistryThe purpose of this study was to characterize a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant for biofilm development prevention. HS (commercial control); HNT (HS+15wt%Halloysite®-clay-nanotube); CHX10% (HS+15wt% HNT-encapsulated with chlorhexidine 10%); and CHX20% (HS+15wt% HNT-encapsulated with CHX20%) were tested. Degree-of-conversion (DC%), Knoop hardness (KHN), and viscosity were analyzed. The ability of the sealant to wet the fissures was evaluated. Specimens were tested for zones of inhibition of microbial growth. S. mutans biofilm was tested by measuring recovered viability. Data were statistically analyzed (p<0.05). DC% was significantly higher for the HNT-CHX groups. For KHN, CHX10% presented a lower mean value than the other groups. Adding HNT resulted in higher viscosity values. The biofilm on CHX10% and CHX20% sealants presented remarkable CFU/mL reduction in comparison to the HS. The experimental material was able to reduce the biofilm development in S. mutans biofilm without compromising the sealant properties.Item Effect of Chlorhexidine-Encapsulated Nanotube-Modified Adhesive System on the Bond Strength to Human Dentin(2019) Kalagi, Sara Arfan; Cook, N. Blaine; Diefenderfer, Kim; Bottino, Marco; Feitosa, SabrinaIntroduction: The resin-dentin interface undergoes degradation by endogenous matrix metalloproteinases (MMPs) after adhesive procedures. Application of several MMP inhibitors such as chlorhexidine (CHX) to the demineralized collagen dentin matrix after acid-etching has been suggested to be a successful approach to prevent degradation of the hybrid layer. Further, nanotubes (HNT) have been used as a reservoir for encapsulation and controlled delivery for several therapeutic drugs with sustained release. Therefore, HNT can be encapsulated with CHX and incorporated into dentin adhesives for the possibility of enhancing the longevity and durability of the hybrid layer. Objective: To evaluate the effect of a CHX-encapsulated nanotube-modified primer/PR and adhesive/ADH on the microtensile resin bond strength (µTBS) to dentin. Materials and Methods: A commercial adhesive and its respective primer were modified by adding CHX-encapsulated nanotubes at two distinct concentrations (10 and 20 wt.%). The experimental adhesives were evaluated by degree of conversion (DC) and viscosity. Meanwhile, only viscosity was determined for the experimental primers. The prepared HNT-encapsulated with CHX (10 and 20 wt.%) powders were incorporated into the primer and/or adhesive according to the groups: ADH (control); HNT (control); 0.2% CHX; PR+CHX10%; PR+CHX20%; ADH+CHX10%; ADH+CHX20%. Human molars were selected and autoclaved; mid-coronal dentin surfaces were exposed for bonding purposes. Dentin surfaces were etched, followed by primer and adhesive application, and restored with a resin composite. After 24 hours, the teeth were sliced into beams for µTBS testing; beams collected for each tooth were equally assigned into two testing condition groups: 24 hours and 6 months. Microtensile bond strength was tested using a universal testing machine, and the types of failure were classified as adhesive, mixed, and cohesive failure. Data from DC and viscosity tests were analyzed using one-way ANOVA. Bond strength data were analyzed by pair-wise comparisons using the Sidak method to control the overall significance level at 5% for each aging time separately. Weibull-distribution survival analysis was used to compare the differences in the microtensile bond strength results among the groups after 24 hours and 6 months. Results and Conclusion: DC analysis revealed no significant differences among adhesive groups. However, ADH group had a significantly lower viscosity than modified adhesive groups, and a significantly higher viscosity than modified primer groups. Test results of stress value (MPa) by each group for each aging time revealed no significant differences among groups after 24 hours. However, after 6-month storage, modified primer groups (PR+CHX10%, PR+CHX20%) and 0.2%CHX group showed a significant difference in µTBS compared to control groups (ADH, HNT) and modified adhesive groups (ADH+CHX10%, ADH+CHX20%) in the same aging time testing (p < 0.05). When comparing the µTBS after 24 hours and 6 months, there were no significant differences among the groups except for the ADH+CHX20% group, for which MPa values were higher after 24 hours than 6 months (p = 0.0487). In conclusion, this study has demonstrated the great potential of modified dental primers with CHX-encapsulated nanotubes in preservation of the resin-dentin bond strength over a 6-month time period. Additionally, modification of dental primers and adhesives was a successful approach that didn’t compromise the characteristics or the mechanical properties of the materials and has a promising long-term effect on resin-dentin bond strength.Item Enhancing Root Caries Lesion Prevention By Combining Two American Dental Association-Recommended Preventive Agents(2022) Almudahi, Abdulellah; Duarte, Simone; Hara, Anderson; Cook, N.BlainePurpose: This in vitro study aims to analyze the effect of combining two ADA-recommended professionally applied 1:1 Chlorhexidine/Thymol varnish ((Cervitec Plus)) and professionally prescribed 5,000 ppm fluoride toothpaste ((PreviDent 5000 Plus)) on reducing lesion depth and increasing mineral content Materials & Methods: Forty-eight dentin specimens were randomly distributed into four treatment groups (n=12 per treatment). Biofilms of Streptococcus mutans and Candida albicans were created on the polished surfaces of bovine root dentin specimens (n=12 per treatment). 1:1 Chlorhexidine/Thymol varnish was applied once then the tested 5,000 ppm fluoride toothpaste was applied for 120 seconds twice daily over the course of 2 days. Tested groups were: (1) 1:1 Chlorhexidine/Thymol varnish ((Cervitec Plus)) (C/T). (2) 5,000 ppm F toothpaste ((PreviDent 5000 Plus)) (F). (3) Combination of 1:1 Chlorhexidine/Thymol varnish ((Cervitec Plus)) & 5000 ppm F toothpaste ((PreviDent 5000 Plus)) (C/T+F). (4) Deionized water (DIW) as control group. Biofilms were analyzed for biofilm dry weight. Dentin specimens were analyzed using transversal microradiography (TMR) for mineral content change and lesion depth. PH data was analyzed using two-way ANOVA. Total biofilm dry weight data was analyzed using one-way ANOVA. Integrated mineral loss and lesion depth data was analyzed using two-way ANOVA All pair-wise comparisons from ANOVA analysis were made using Fisher’s Protected Least Significant Differences to control the overall significance level at 5%. Results: Treatment with (C/T+F) resulted in higher mean pH values compared to the control group (DIW) and (F) group. The average pH values of group (C/T) were not statistically different than group (C/T+F). the biomass of the combined S. mutans & C. albicans biofilm among all the groups were not significantly different. (DIW) presented significantly deeper lesions for both surfaces (sound &demineralized) when compared to (F) (P=0.0118), (C/T) (P=0.0002), and (C/T+F) (P<.0001). The sound surfaces for the specimens for group (C/T) and Group (F) showed superficial lesion depth. However, the sound surfaces of specimens treated with (C/T+F) showed the most superficial depth. Due to mineral gain, the demineralized surfaces of the specimens of both (C/T) & (C/T+F) showed a decrease in the lesion depth. Conclusion: Within the limitations of our study. The combination of 5,000 ppm fluoride toothpaste and CHX/Thymol had no significant effect on mineral content. However, the combination had a considerable effect on lesion depth reduction.Item The Impact of Mouthrinses on the Efficacy of Fluoride Dentifrices in Preventing Enamel and Dentin Erosion/ Abrasion(2018) Albeshir, Ebtehal; Lippert, Frank; Cook, Norman B.; Hara, AndersonObjective: Toothbrushing with fluoride toothpaste followed by rinsing with mouthwash is a routine procedure to maintain good oral hygiene. It is unknown to what extent these rinses can modulate the effect of fluoride in its ability to prevent erosion/abrasion.The aim of this in-vitro study was to investigate and compare the impact of chlorhexidine (CHX), essential oils (EO) and cetylpyridinium chloride (CPC) mouthrinses on erosive tooth wear protection afforded by conventional fluoride toothpastes. Materials and Methods: The following experimental factors were considered: five rinses: CHX, EO, CPC, a fluoride rinse, and deionized water, two fluoride toothpastes: stannous fluoride (SnF2) or sodium fluoride (NaF) and two models: (erosion/ erosion+abrasion). Slabs of bovine enamel and dentin were prepared and embedded in resin blocks and generated 10 enamel and dentin testing groups (n = 8). UPVC tapes were placed on the sides of each slab leaving 1mm area exposed in the center. The blocks were subjected to a five-day cycling model. Then, the blocks were placed in a brushing machine and exposed to fluoride toothpaste slurry (one side was brushed and the other wasn’t). The blocks were then exposed to rinse treatments. Artificial saliva was used to remineralize the specimens after erosions and treatment challenges, and as storage media. After the fifth day of cycling, surface loss (in micrometers) was determined by profilometer. Data were analyzed using ANOVA (α = 0.05). Results: There was no interaction among the three factors (type of toothpaste, mouthrinse and abrasion or not (dentin p = 0.0520, enamel p = 0.4720). There were no significant two-way interactions as SL was only affected by toothpaste and mouthrinse. NaF caused less SL than SnF2 (4.60 vs. 5.83 μm; p < 0.0001) in dentin, whereas the opposite was found in enamel (5.20 vs. 3.56 μm; p < 0.0001). Toothbrushing abrasion caused comparatively more SL in enamel (6.53 vs. 2.23 μm; p < 0.0001) than in dentin (6.06 vs. 4.38 μm; p < 0.0001). None of the tested mouthrinses affected SL. Conclusion: Commonly used mouthrinses containing antimicrobial agents or additional fluoride, do not impair the erosion/abrasion protection afforded by fluoride toothpastes. Tested SnF2 dentifrice offered greater protection against enamel surface loss and NaF dentifrices showed more protection for the dentin surface. Clinical relevance: The understanding of the interaction between commonly used rinses and fluoride dentifrices will help dentists provide better recommendations to patients with erosive lesions.Item Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics(Elsevier, 2022) Ribeiro, Juliana S.; Sanz, Carolina K.; Münchow, Eliseu A.; Kalra, Nikhil; Dubey, Nileshkumar; Suárez, Carlos Enrique C.; Fenno, J. Christopher; Lund, Rafael G.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryObjectives: This work sought to formulate photocrosslinkable chlorhexidine (CHX)-laden methacrylated gelatin (CHX/GelMA) hydrogels with broad spectrum of action against endodontic pathogens as a clinically viable cell-friendly disinfection therapy prior to regenerative endodontics procedures. Methods: CHX/GelMA hydrogel formulations were successfully synthesized using CHX concentrations between 0.12 % and 5 % w/v. Hydrogel microstructure was evaluated by scanning electron microscopy (SEM). Swelling and enzymatic degradation were assessed to determine microenvironmental effects. Compression test was performed to investigate the influence of CHX incorporation on the hydrogels' biomechanics. The antimicrobial and anti-biofilm potential of the formulated hydrogels were assessed using agar diffusion assays and a microcosms biofilm model, respectively. The cytocompatibility was evaluated by exposing stem cells from human exfoliated deciduous teeth (SHEDs) to hydrogel extracts (i.e., leachable byproducts obtained from overtime hydrogel incubation in phosphate buffer saline). The data were analyzed using One- and Two-way ANOVA and Tukey's test (α = 0.05). Results: CHX/GelMA hydrogels were effectively prepared. NMR spectroscopy confirmed the incorporation of CHX into GelMA. The addition of CHX did not change the micromorphology (pore size) nor the swelling profile (p > 0.05). CHX incorporation reduced the degradation rate of the hydrogels (p < 0.001); whereas, it contributed to increased compressive modulus (p < 0.05). Regarding the antimicrobial properties, the incorporation of CHX showed a statistically significant decrease in the number of bacteria colonies at 0.12 % and 0.5 % concentration (p < 0.001) and completely inhibited the growth of biofilm at concentration levels 1 %, 2 %, and 5 %. Meanwhile, the addition of CHX, regardless of the concentration, did not lead to cell toxicity, as cell viability values were above 70 %. Significance: The addition of CHX into GelMA showed significant antimicrobial action against the pathogens tested, even at low concentrations, with the potential to be used as a cell-friendly injectable drug delivery system for root canal disinfection prior to regenerative endodontics.Item Physicochemical and Biological Properties of Novel Chlorhexidine-Loaded Nanotube-Modified Dentin Adhesive(Wiley, 2018-09-10) Feitosa, Sabrina A.; Palasuk, Jadesada; Geraldeli, Saulo; Windsor, L. Jack; Bottino, Marco C.; Biomedical Sciences and Comprehensive Care, School of DentistryA commercially available three-step (etch-and-rinse) adhesive was modified by adding chlorhexidine (CHX)-loaded nanotubes (Halloysite®, HNT) at two concentrations (CHX10% and CHX20%). The experimental groups were: SBMP (unmodified adhesive, control), HNT (SBMP modified with HNT), CHX10 (SBMP modified with HNT loaded with CHX10%), and CHX20 (SBMP modified with HNT loaded with CHX20%). Changes in the degree of conversion (DC%), Knoop hardness (KHN), water sorption (WS), solubility (SL), antimicrobial activity, cytotoxicity, and anti-matrix metalloproteinase [MMP-1] activity (collagenase-I) were evaluated. In regards to DC%, two-way ANOVA followed by Tukey’s post-hoc test revealed that only the factor “adhesive” was statistically significant (p<0.05). No significant differences were detected in DC% when 20 s light-curing was used (p>0.05). For Knoop microhardness, one-way ANOVA followed by the Tukey’s test showed statistically significant differences when comparing HNT (20.82±1.65) and CHX20% (21.71±2.83) with the SBMP and CHX10% groups. All adhesives presented similar WS and cytocompatibility. The CHX-loaded nanotube-modified adhesive released enough CHX to inhibit the growth of S. mutans and L. casei. Adhesive eluates were not able to effectively inhibit MMP-1 activity. The evaluation of higher CHX concentrations might be necessary to provide an effective and predictable MMP inhibition.Item Pulp reactions to a synthetic hydroxyapatite and chlorhexidine in monkeys(1980) Ibarra, Alejandro JavierThe study compared pulp reactions to a synthetic hydroxyapatite and to calcium hydroxide with either one percent chlorhexidine or distilled water as a mixing vehicle. Forty-seven permanent teeth of two monkeys were mechanically exposed under aseptic conditions. The pulps were then capped with one of the following: synthetic hydroxyapatite mixed with chlorhexidine; synthetic hydroxyapatite mixed with water; calcium hydroxide mixed with chlorhexidine; calcium hydroxide mixed with water. Small square sheets of gold foil were then placed over the capping material. A base of IRM was placed and the cavities were restored with amalgam. The teeth were extracted at 14 and 90 days after pulp capping. The specimens were fixed in 10% formalin and decalcified in 5% formic acid. Serial sections 7 microns thick were prepared and stained with hematoxylin and eosin. The synthetic hydroxyapatite mixed with one percent chlorhexidine or water was well tolerated by the dental pulp. Complete bridging occurred infrequently in the specimens capped with the hydroxyapatite, compared to those capped with calcium hydroxide, which usually showed complete bridging of the exposure.