- Browse by Subject
Browsing by Subject "Chemokines"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19(Springer Nature, 2021) Julian, Dana R.; Kazakoff, Megan A.; Patel, Akhil; Jaynes, Jesse; Willis, Monte S.; Yates, Cecelia C.; Medicine, School of MedicineCoronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 betacoronavirus and has taken over 761,426 American lives as of the date of publication and will likely result in long-term, if not permanent, tissue damage for countless patients. COVID-19 presents with diverse and multisystemic pathologic processes, including a hyperinflammatory response, acute respiratory distress syndrome (ARDS), vascular injury, microangiopathy, tissue fibrosis, angiogenesis, and widespread thrombosis across multiple organs, including the lungs, heart, kidney, liver, and brain. C-X-C chemokines contribute to these pathologies by attracting inflammatory mediators, the disruption of endothelial cell integrity and function, and the initiation and propagation of the cytokine storm. Among these, CXCL10 is recognized as a critical contributor to the hyperinflammatory state and poor prognosis in COVID-19. CXCL10 is also known to regulate growth factor-induced fibrosis, and recent evidence suggests the CXCL10-CXCR3 signaling system may be vital in targeting convergent proinflammatory and pro-fibrotic pathways. This review will explore the mechanistic role of CXCL10 and related chemokines in fibrotic complications associated with COVID-19 and the potential of CXCL10-targeted therapeutics for early intervention and long-term treatment of COVID-19-induced fibrosis.Item CXCL15/Lungkine has Suppressive Activity on Proliferation and Expansion of Multi-potential, Erythroid, Granulocyte and Macrophage Progenitors in S-Phase Specific Manner(Elsevier, 2021) Broxmeyer, Hal E.; Cooper, Scott H.; Ropa, James; Microbiology and Immunology, School of MedicineCytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types. This suggests that CXCL15/Lungkine acts as a negative regulator of the cell cycling of these HPCs in vivo. Recombinant murine CXCL15/Lungkine, decreased numbers of functional HPCs during cytokine-enhanced ex-vivo culture of lineage negative mouse bone marrow cells. Moreover, CXCL15/Lungkine, through S-Phase specific actions, was able to suppress in vitro colony formation of normal wildtype mouse bone marrow CFU-GM, CFU-G, CFU-M, BFU-E, and CFU-GEMM. This clearly identifies the negative regulatory activity of CXCL15/Lungkine on proliferation of multiple types of mouse HPCs.Item Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer(Sage, 2022) Hassan, Md Sazzad; Cwidak, Nicholas; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineEsophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs' impact on EC growth and therapy.Item The effect of marrow secretome and culture environment on the rate of metastatic breast cancer cell migration in two and three dimensions(American Society for Cell Biology, 2021-05) Curtis, Kimberly J.; Mai, Christine; Martin, Hannah; Oberman, Alyssa G.; Alderfer, Laura; Romero-Moreno, Ricardo; Walsh, Mark; Mitros, Stephen F.; Thomas, Scott G.; Dynako, Joseph A.; Zimmer, David I.; McNamara, Laoise M.; Littlepage, Laurie E.; Niebur, Glen L.; Medicine, School of MedicineMetastasis is responsible for over 90% of cancer-related deaths, and bone is the most common site for breast cancer metastasis. Metastatic breast cancer cells home to trabecular bone, which contains hematopoietic and stromal lineage cells in the marrow. As such, it is crucial to understand whether bone or marrow cells enhance breast cancer cell migration toward the tissue. To this end, we quantified the migration of MDA-MB-231 cells toward human bone in two- and three-dimensional (3D) environments. First, we found that the cancer cells cultured on tissue culture plastic migrated toward intact trabecular bone explants at a higher rate than toward marrow-deficient bone or devitalized bone. Leptin was more abundant in conditioned media from the cocultures with intact explants, while higher levels of IL-1β, IL-6, and TNFα were detected in cultures with both intact bone and cancer cells. We further verified that the cancer cells migrated into bone marrow using a bioreactor culture system. Finally, we studied migration toward bone in 3D gelatin. Migration speed did not depend on stiffness of this homogeneous gel, but many more dendritic-shaped cancer cells oriented and migrated toward bone in stiffer gels than softer gels, suggesting a coupling between matrix mechanics and chemotactic signals.Item In Staphylococcus aureus, the Particulate State of the Cell Envelope Is Required for the Efficient Induction of Host Defense Responses(American Society for Microbiology, 2019-11-18) Kim, ByungHyun; Jiang, TingTing; Bae, Jun-Hyun; Yun, Hye Su; Jang, Seong Han; Kim, Jung Hyun; Kim, Jae Deog; Hur, Jin-Hoe; Shibata, Kensuke; Kurokawa, Kenji; Jung, Yunjin; Peschel, Andreas; Bae, Taeok; Lee, Bok Luel; Microbiology and Immunology, School of MedicineUpon microbial infection, host immune cells recognize bacterial cell envelope components through cognate receptors. Although bacterial cell envelope components function as innate immune molecules, the role of the physical state of the bacterial cell envelope (i.e., particulate versus soluble) in host immune activation has not been clearly defined. Here, using two different forms of the staphylococcal cell envelope of Staphylococcus aureus RN4220 and USA300 LAC strains, we provide biochemical and immunological evidence that the particulate state is required for the effective activation of host innate immune responses. In a murine model of peritoneal infection, the particulate form of the staphylococcal cell envelope (PCE) induced the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and CC chemokine ligand 2 (CCL2), the chemotactic cytokines for neutrophils and monocytes, respectively, resulting in a strong influx of the phagocytes into the peritoneal cavity. In contrast, compared with PCE, the soluble form of cell envelope (SCE), which was derived from PCE by treatment with cell wall-hydrolyzing enzymes, showed minimal activity. PCE also induced the secretion of calprotectin (myeloid-related protein 8/14 [MRP8/14] complex), a phagocyte-derived antimicrobial protein, into the peritoneal cavity at a much higher level than did SCE. The injected PCE particles were phagocytosed by the infiltrated neutrophils and monocytes and then delivered to mediastinal draining lymph nodes. More importantly, intraperitoneally (i.p.) injected PCE efficiently protected mice from S. aureus infection, which was abolished by the depletion of either monocytes/macrophages or neutrophils. This study demonstrated that the physical state of bacterial cells is a critical factor for efficient host immune activation and the protection of hosts from staphylococcal infections.Item Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease(Elsevier, 2020) Slevin, Elise; Baiocchi, Leonardo; Wu, Nan; Ekser, Burcin; Sato, Keisaku; Lin, Emily; Ceci, Ludovica; Chen, Lixian; Lorenzo, Sugeily R.; Xu, Wenjuan; Kyritsi, Konstantina; Meadows, Victoria; Zhou, Tianhao; Kundu, Debiyoti; Han, Yuyan; Kennedy, Lindsey; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Meng, Fanyin; Surgery, School of MedicineChronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD). This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma. Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs) are the resident macrophages of the liver involved in the progression of ALD by activating pathways that lead to the production of cytokines and chemokines. In addition, KCs are involved in the production of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopolysaccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipopolysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polarization. Evidence from mouse models and early clinical studies in patients with ALD injury supports the notion that pathogenic macrophage subsets can be successfully translated into novel treatment options for patients with this disease.Item Microglial Heterogeneity and Its Potential Role in Driving Phenotypic Diversity of Alzheimer’s Disease(MDPI, 2021-03-09) Sorrentino, Stefano; Ascari, Roberto; Maderna, Emanuela; Catania, Marcella; Ghetti, Bernardino; Tagliavini, Fabrizio; Giaccone, Giorgio; Di Fede, Giuseppe; Pathology and Laboratory Medicine, School of MedicineAlzheimer's disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct "neuroinflammatory clusters". These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving-at least in part-the AD phenotypic diversity.Item Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis(American Thoracic Society, 2012-05) Uchida, Masaru; Shiraishi, Hiroshi; Ohta, Shoichiro; Arima, Kazuhiko; Taniguchi, Kazuto; Suzuki, Shoichi; Okamoto, Masaki; Ahlfeld, Shawn K.; Ohshima, Koichi; Kato, Seiya; Toda, Shuji; Sagara, Hironori; Aizawa, Hisamichi; Hoshino, Tomoaki; Conway, Simon J.; Hayashi, Shinichiro; Izuhara, Kenji; Department of Pediatrics, IU School of MedicineIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal form of interstitial lung disease (ILD). The precise molecular mechanisms of IPF remain poorly understood. However, analyses of mice receiving bleomycin (BLM) as a model of IPF established the importance of preceding inflammation for the formation of fibrosis. Periostin is a recently characterized matricellular protein involved in modulating cell functions. We recently found that periostin is highly expressed in the lung tissue of patients with IPF, suggesting that it may play a role in the process of pulmonary fibrosis. To explore this possibility, we administered BLM to periostin-deficient mice, and they subsequently showed a reduction of pulmonary fibrosis. We next determined whether this result was caused by a decrease in the preceding recruitment of neutrophils and macrophages in the lungs because of the lower production of chemokines and proinflammatory cytokines. We performed an in vitro analysis of chemokine production in lung fibroblasts, which indicated that periostin-deficient fibroblasts produced few or no chemokines in response to TNF-α compared with control samples, at least partly explaining the lack of inflammatory response and, therefore, fibrosis after BLM administration to periostin-deficient mice. In addition, we confirmed that periostin is highly expressed in the lung tissue of chemotherapeutic-agent-induced ILD as well as of patients with IPF. Taking these results together, we conclude that periostin plays a unique role as an inducer of chemokines to recruit neutrophils and macrophages important in the process of pulmonary fibrosis in BLM-administered model mice. Our results suggest a therapeutic potential for periostin in IPF and drug-induced ILD.Item Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling(American Society for Clinical Investigation, 2019-05-20) Capitano, Maegan L.; Mor-Vaknin, Nirit; Saha, Anjan K.; Cooper, Scott; Legendre, Maureen; Guo, Haihong; Contreras-Galindo, Rafael; Kappes, Ferdinand; Sartor, Maureen A.; Lee, Christopher T.; Huang, Xinxin; Markovitz, David M.; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineThe nuclear protein DEK is an endogenous DNA-binding chromatin factor regulating hematopoiesis. DEK is one of only 2 known secreted nuclear chromatin factors, but whether and how extracellular DEK regulates hematopoiesis is not known. We demonstrated that extracellular DEK greatly enhanced ex vivo expansion of cytokine-stimulated human and mouse hematopoietic stem cells (HSCs) and regulated HSC and hematopoietic progenitor cell (HPC) numbers in vivo and in vitro as determined both phenotypically (by flow cytometry) and functionally (through transplantation and colony formation assays). Recombinant DEK increased long-term HSC numbers and decreased HPC numbers through a mechanism mediated by the CXC chemokine receptor CXCR2 and heparan sulfate proteoglycans (HSPGs) (as determined utilizing Cxcr2-/- mice, blocking CXCR2 antibodies, and 3 different HSPG inhibitors) that was associated with enhanced phosphorylation of ERK1/2, AKT, and p38 MAPK. To determine whether extracellular DEK required nuclear function to regulate hematopoiesis, we utilized 2 mutant forms of DEK: one that lacked its nuclear translocation signal and one that lacked DNA-binding ability. Both altered HSC and HPC numbers in vivo or in vitro, suggesting the nuclear function of DEK is not required. Thus, DEK acts as a hematopoietic cytokine, with the potential for clinical applicability.Item Senescence Connects Autophagy Deficiency to Inflammation and Tumor Progression in the Liver(Elsevier, 2022) Huda, Nazmul; Khambu, Bilon; Liu, Gang; Nakatsumi, Hirokazu; Yan, Shengmin; Chen, Xiaoyun; Ma, Michelle; Dong, Zheng; Nakayama, Keiichi I.; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineBackground & aims: Cellular senescence frequently is present in injured livers. The induction mechanism and the pathologic role are not always clear. We aimed to understand the dynamics of senescence induction and progression, and the mechanism responsible for the pathology using a mouse model that disables the essential process of autophagy. Methods: Mice deficient in key autophagy genes Atg7 or Atg5 in the liver were used. Senescence was measured using established cellular and molecular signatures. The mechanistic roles of nuclear factor erythroid 2 (NRF2), forkhead box K1, and C-C motif chemokine receptor 2 (CCR2) were assessed using mouse genetic models. Liver functions, pathology, and tumor development were measured using biochemical and histologic approaches. Results: Inducible deletion of Atg7 rapidly up-regulated cyclin-dependent kinase inhibitors independently of injury and induced senescence-associated β-galactosidase activities and senescence-associated secretory phenotype (SASP). Sustained activation of NRF2 was the major factor causing senescence by mediating oxidative DNA damage and up-regulating C-C motif chemokine ligand 2, a key component of autophagy-related SASP, via the NRF2-forkhead box K1 axis. Senescence was responsible for hepatic inflammation through CCR2-mediated recruitment of CD11b+ monocytes and CD3+ T cells. The CCR2-mediated process in turn enhanced senescence and SASP by up-regulating cyclin-dependent kinase inhibitors and chemokines. Thus, senescence and inflammation can mutually augment each other, forming an amplification loop for both events. The CCR2-mediated process also modulated liver injury and tumor progression at the later stage of autophagy deficiency-related pathology. Conclusions: These results provide the insight that hepatic senescence can occur early in the disease process, triggers inflammation and is enhanced by inflammation, and has long-term effects on liver injury and tumor progression.