- Browse by Subject
Browsing by Subject "Chancroid"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Haemophilus ducreyi Hfq Contributes to Virulence Gene Regulation as Cells Enter Stationary Phase(American Society for Microbiology, 2014-02-11) Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R.; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M.; Katz, Barry P.; Brautigam, Chad A.; Munson, Robert S., Jr.; Hansen, Eric J.; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineTo adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Importance: Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.Item The Haemophilus ducreyi SAP Transporter Contributes to Antimicrobial Peptide Resistance(2009-09-30T19:56:19Z) Mount, Kristy Lee Beavers; Margaret E. Bauer, PhDHaemophilus ducreyi is the causative agent of the genital ulcer disease chancroid, which has been shown to facilitate the transmission of HIV. H. ducreyi is likely exposed to multiple sources of antimicrobial peptides in vivo. APs are small, cationic molecules with both bactericidal and immunomodulatory functions. Because H. ducreyi is able to establish and maintain an infection in an environment rich with antimicrobial peptides, we hypothesized that the bacterium was resistant to the bactericidal effects of these peptides. Using a 96-well AP bactericidal assay, we examined H. ducreyi susceptibility to eight human APs likely to be encountered at the site of infection, including the α-defensins human neutrophil peptide-1, human neutrophil peptide-2, human neutrophil peptide-3, and human defensin 5, the β-defensins human β defensin-2, human beta defensin-3, and human beta defensin-4, and the human cathelicidin, LL-37. H. ducreyi survival was compared to the survival of Escherichia coli ML35, a strain known to be susceptible to several antimicrobial peptides. H. ducreyi was significantly more resistant than E. coli ML35 to the bactericidal effects of all peptides tested. Furthermore, we found that representative class I and class II strains of H. ducreyi were each resistant to APs of each functional category, indicating that resistance to antimicrobial peptides could represent a conserved method of pathogenesis for H. ducreyi as a species. The H. ducreyi genome contains a homolog for the Sap influx transporter. To study the role of the H. ducreyi Sap transporter in AP resistance, we generated an isogenic sapA mutant and used the 96-well AP bactericidal assay to compare the AP susceptibility profiles of wild-type H. ducreyi, the sapA mutant and the sapA trans-complement to α-defensins, β-defensins, and LL-37. We observed a 25% decrease in the survival of the sapA mutant when it was exposed to LL-37. These findings suggest that the H. ducreyi Sap transporter plays a role in H. ducreyi resistance to LL-37, but it is likely that other AP resistance mechanisms co-exist within the bacterium.Item Outer membrane protein P4 is not required for virulence in the human challenge model of Haemophilus ducreyi infection(Springer Nature, 2014-06-24) Janowicz, Diane M.; Zwickl, Beth W.; Fortney, Kate R.; Katz, Barry P.; Bauer, Margaret E.; Medicine, School of MedicineBackground: Bacterial lipoproteins often play important roles in pathogenesis and can stimulate protective immune responses. Such lipoproteins are viable vaccine candidates. Haemophilus ducreyi, which causes the sexually transmitted disease chancroid, expresses a number of lipoproteins during human infection. One such lipoprotein, OmpP4, is homologous to the outer membrane lipoprotein e (P4) of H. influenzae. In H. influenzae, e (P4) stimulates production of bactericidal and protective antibodies and contributes to pathogenesis by facilitating acquisition of the essential nutrients heme and nicotinamide adenine dinucleotide (NAD). Here, we tested the hypothesis that, like its homolog, H. ducreyi OmpP4 contributes to virulence and stimulates production of bactericidal antibodies. Results: We determined that OmpP4 is broadly conserved among clinical isolates of H. ducreyi. We next constructed and characterized an isogenic ompP4 mutant, designated 35000HPompP4, in H. ducreyi strain 35000HP. To test whether OmpP4 was necessary for virulence in humans, eight healthy adults were experimentally infected. Each subject was inoculated with a fixed dose of 35000HP on one arm and three doses of 35000HPompP4 on the other arm. The overall parent and mutant pustule formation rates were 52.4% and 47.6%, respectively (P = 0.74). These results indicate that expression of OmpP4 in not necessary for H. ducreyi to initiate disease or progress to pustule formation in humans. Hyperimmune mouse serum raised against purified, recombinant OmpP4 did not promote bactericidal killing of 35000HP or phagocytosis by J774A.1 mouse macrophages in serum bactericidal and phagocytosis assays, respectively. Conclusions: Our data suggest that, unlike e (P4), H. ducreyi OmpP4 is not a suitable vaccine candidate. OmpP4 may be dispensable for virulence because of redundant mechanisms in H. ducreyi for heme acquisition and NAD utilization.Item Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro(PLoS, 2015-04-22) Trombley, Michael P.; Post, Deborah M.B.; Rinker, Sherri D.; Reinders, Lorri M.; Fortney, Kate R.; Zwiki, Beth W.; Janowicz, Diane M.; Baye, Fitsum M.; Katz, Barry P.; Spinola, Stanley M.; Bauer, Margaret E.; Department of Microbiology and Immunology, IU School of MedicineHaemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs), including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.