The Haemophilus ducreyi SAP Transporter Contributes to Antimicrobial Peptide Resistance

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2009-09-30T19:56:19Z
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Ph.D.
Degree Year
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Haemophilus ducreyi is the causative agent of the genital ulcer disease chancroid, which has been shown to facilitate the transmission of HIV. H. ducreyi is likely exposed to multiple sources of antimicrobial peptides in vivo. APs are small, cationic molecules with both bactericidal and immunomodulatory functions. Because H. ducreyi is able to establish and maintain an infection in an environment rich with antimicrobial peptides, we hypothesized that the bacterium was resistant to the bactericidal effects of these peptides. Using a 96-well AP bactericidal assay, we examined H. ducreyi susceptibility to eight human APs likely to be encountered at the site of infection, including the α-defensins human neutrophil peptide-1, human neutrophil peptide-2, human neutrophil peptide-3, and human defensin 5, the β-defensins human β defensin-2, human beta defensin-3, and human beta defensin-4, and the human cathelicidin, LL-37. H. ducreyi survival was compared to the survival of Escherichia coli ML35, a strain known to be susceptible to several antimicrobial peptides. H. ducreyi was significantly more resistant than E. coli ML35 to the bactericidal effects of all peptides tested. Furthermore, we found that representative class I and class II strains of H. ducreyi were each resistant to APs of each functional category, indicating that resistance to antimicrobial peptides could represent a conserved method of pathogenesis for H. ducreyi as a species. The H. ducreyi genome contains a homolog for the Sap influx transporter. To study the role of the H. ducreyi Sap transporter in AP resistance, we generated an isogenic sapA mutant and used the 96-well AP bactericidal assay to compare the AP susceptibility profiles of wild-type H. ducreyi, the sapA mutant and the sapA trans-complement to α-defensins, β-defensins, and LL-37. We observed a 25% decrease in the survival of the sapA mutant when it was exposed to LL-37. These findings suggest that the H. ducreyi Sap transporter plays a role in H. ducreyi resistance to LL-37, but it is likely that other AP resistance mechanisms co-exist within the bacterium.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}