- Browse by Subject
Browsing by Subject "Cell Proliferation"
Now showing 1 - 10 of 29
Results Per Page
Sort Options
Item Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure(Oxford University Press, 2016-04) Fu, Sherleen; Jiang, Wendy; Gao, Xiang; Zeng, Andrew; Cholger, Daniel; Cannon, Jason; Chen, Jinhui; Zheng, Wei; Department of Neurological Surgery, School of MedicineAdult neurogenesis occurs in brain subventricular zone (SVZ). Our recent data reveal an elevated proliferation of BrdU(+) cells in SVZ following subchronic manganese (Mn) exposure in rats. This study was designed to distinguish Mn effect on the critical stage of adult neurogenesis, ie, proliferation, migration, survival and differentiation from the SVZ via the rostral migratory stream to the olfactory bulb (OB). Adult rats received a single ip-dose of BrdU at the end of 4-week Mn exposure to label proliferating cells. Immunostaining and cell-counting showed a 48% increase of BrdU(+) cells in Mn-exposed SVZ than in controls (P< .05). These BrdU(+) cells were identified as a mixed population of mainly GFAP(+) type-B neural stem cells, Nestin(+) type-C transit progenitor cells, DCX(+) migratory neuroblasts and Iba1(+) microglial cells. Another group of adult rats received 3 daily ip-injections of BrdU followed by subchronic Mn exposure. By 4-week post BrdU labeling, most of the surviving BrdU(+) cells in the OB were differentiated into NeuN(+) matured neurons. However, survival rates of BrdU/NeuN/DAPI triple-labeled cells in OB were 33% and 64% in Mn-exposed and control animals, respectively (P< .01). Infusion of Cu directly into the lateral ventricle significantly decreased the cell proliferation in the SVZ. Taken together, these results suggest that Mn exposure initially enhances the cell proliferation in adult SVZ. In the OB, however, Mn exposure significantly reduces the surviving adult-born cells and markedly inhibits their differentiation into mature neurons, resulting in an overall decreased adult neurogenesis in the OB.Item Changes in mRNA/protein expression and signaling pathways in in vivo passaged mouse ovarian cancer cells(Public Library of Science, 2018-06-21) Cai, Qingchun; Fan, Qipeng; Buechlein, Aaron; Miller, David; Nephew, Kenneth P.; Liu, Sheng; Wan, Jun; Xu, Yan; Obstetrics and Gynecology, School of MedicineThe cure rate for late stage epithelial ovarian cancer (EOC) has not significantly improved over several decades. New and more effective targets and treatment modalities are urgently needed. RNA-seq analyses of a syngeneic EOC cell pair, representing more and less aggressive tumor cells in vivo were conducted. Bioinformatics analyses of the RNA-seq data and biological signaling and function studies have identified new targets, such as ZIP4 in EOC. Many up-regulated tumor promoting signaling pathways have been identified which are mainly grouped into three cellular activities: 1) cell proliferation and apoptosis resistance; 2) cell skeleton and adhesion changes; and 3) carbohydrate metabolic reprograming. Unexpectedly, lipid metabolism has been the major down-regulated signaling pathway in the more aggressive EOC cells. In addition, we found that hypoxic responsive genes were at the center stage of regulation and detected functional changes were related to cancer stem cell-like activities. Moreover, our genetic, cellular, biochemical, and lipidomic analyses indicated that cells grown in 2D vs. 3D, or attached vs. suspended had dramatic changes. The important clinical implications of peritoneal cavity floating tumor cells are supported by the data proved in this work. Overall, the RNA-seq data provide a landscape of gene expression alterations during tumor progression.Item Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury(Elsevier, 2017-06) Bhatwadekar, Ashay D.; Beli, Eleni; Diao, Yanpeng; Chen, Jonathan; Luo, Qianyi; Alex, Alpha; Caballero, Sergio; Dominguez, James M., II; Salazar, Tatiana E.; Busik, Julia V.; Segal, Mark S.; Grant, Maria B.; Ophthalmology, School of MedicineThe brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1 constitutes a major transcriptional regulator of the circadian clock. Here, we explored the impact of conditional deletion of Bmal1 in endothelium and hematopoietic cells in murine models of microvascular and macrovascular injury. We used two models of Bmal1fx/fx;Tek-Cre mice, a retinal ischemia/reperfusion model and a neointimal hyperplasia model of the femoral artery. Eyes were enumerated for acellular capillaries and were stained for oxidative damage markers using nitrotyrosine immunohistochemistry. LSK (lineage-negative, stem cell antigen-1-positive, c-Kit-positive) cells were quantified and proliferation assessed. Hematopoiesis is influenced by innervation to the bone marrow, which we assessed using IHC analysis. The number of acellular capillaries increased threefold, and nitrotyrosine staining increased 1.5-fold, in the retinas of Bmal1fx/fx;Tek-Cre mice. The number of LSK cells from the Bmal1fx/fx;Tek-Cre mice decreased by 1.5-fold and was accompanied by a profound decrease in proliferative potential. Bmal1fx/fx;Tek-Cre mice also exhibited evidence of bone marrow denervation, demonstrating a loss of neurofilament-200 staining. Injured femoral arteries showed a 20% increase in neointimal hyperplasia compared with similarly injured wild-type controls. Our study highlights the importance of the circadian clock in maintaining vascular homeostasis and demonstrates that specific deletion of BMAL1 in endothelial and hematopoietic cells results in phenotypic features similar to those of diabetes.Item Critical Role of the mTOR Pathway in Development and Function of Myeloid-Derived Suppressor Cells in lal−/− Mice(Elsevier B.V., 2014-02) Ding, Xinchun; Du, Hong; Yoder, Mervin C.; Yan, Cong; Department of Pathology and Laboratory Medicine, IU School of MedicineLysosomal acid lipase (LAL) is essential for the hydrolysis of cholesteryl esters and triglycerides to generate cholesterol and free fatty acids in cellular lysosomes. Ablation of the lal gene (lal−/−) systemically increased expansion of cluster of differentiation molecule 11b (CD11b), lymphocyte antigen 6G (Ly6G) myeloid-derived suppressor cells (MDSCs) that caused myeloproliferative neoplasms in mice. Study of lal−/− bone marrow Ly6G+ MDSCs via transcriptional profiling showed increases in mammalian target of rapamycin (mTOR) signaling pathway transcripts. Injection of mTOR pharmacologic inhibitors into lal−/− mice significantly reduced bone marrow myelopoiesis and systemic CD11b+Ly6G+ cell expansion. Rapamycin treatment of lal−/− mice stimulated a shift from immature CD11b+Ly6G+ cells to CD11b+ single-positive cells in marrow and tissues and partially reversed the increased cell proliferation, decreased apoptosis, increased ATP synthesis, and increased cell cycling of bone marrow CD11b+Ly6G+ cells obtained from lal−/− mice. Pharmacologic and siRNA suppression of mTOR, regulatory-associated protein of mTOR, rapamycin-insensitive companion of mTOR, and Akt1 function corrected CD11b+Ly6G+ cell in lal−/− mice development from Lin− progenitor cells and reversed the immune suppression on T-cell proliferation and function in association with decreased reactive oxygen species production, and recovery from impairment of mitochondrial membrane potential compared with control mutant cells. These results indicate a crucial role of LAL-regulated mTOR signaling in the production and function of CD11b+Ly6G+ cells. The mTOR pathway may serve as a novel target to modulate the emergence of MDSCs in those pathophysiologic states in which these cells play an immunosuppressive role.Item Deficits in a Radial-Arm Maze Spatial Pattern Separation Task and Cell Proliferation in a Mouse Model for Down Syndrome(Office of the Vice Chancellor for Research, 2016-04-08) Stringer, Megan; Podila, Himabindu; Dalman, Noriel; East, Audrey; Roper, Randall J.; Goodlett, Charles R.Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in an array of phenotypes including intellectual disability. Ts65Dn mice have three copies of ~50% of the genes on Hsa21 and display many phenotypes associated with DS, including cognitive deficits. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including CNS development. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have shown that a three-week EGCG treatment normalizes skeletal abnormalities in Ts65Dn mice, yet did not rescue deficits in the Morris water maze spatial learning task or novel object recognition. The current study investigated deficits in a radial arm maze pattern separation task in Ts65Dn mice. Pattern separation requires differentiation between similar memories acquired during learning; distinguishing between these similar memories is thought to depend on distinctive encoding in the hippocampus. Pattern separation has been linked to functional activity of newly generated granule cells in the dentate gyrus. Recent studies in Ts65Dn mice have reported significant reductions in adult hippocampal neurogenesis, and after EGCG treatment, enhanced hippocampal neurogenesis. Thus, it was hypothesized that Ts65Dn mice would be impaired in the pattern separation task, and that EGCG would alleviate the pattern separation deficits seen in trisomic mice, in association with increased adult hippocampal neurogenesis. Beginning on postnatal day 75, mice were trained on a radial arm maze-delayed non-matching-to-place pattern separation task. Euploid mice performed significantly better over training than Ts65Dn mice, including better performance at each of the three separations. EGCG did not significantly alleviate the pattern separation deficits in Ts65Dn mice. The euploid controls had significantly more BrdU labeled cells than Ts65Dn mice, however, EGCG does not appear to increase proliferation of the hippocampal neuroprogenitor cells.Item Development of astrocytes in the vertebrate eye(Wiley Blackwell (John Wiley & Sons), 2014-12) Tao, Chenqi; Zhang, Xin; Department of Medical & Molecular Genetics, IU School of MedicineAstrocytes represent the earliest glial population in the embryonic optic nerve, contributing critically to retinal angiogenesis and formation of brain-retinal-barrier. Despite of many developmental and clinical implications of astrocytes, answers to some of the most fundamental questions of this unique type of glial cells remain elusive. This review provides an overview of the current knowledge about the origination, proliferation, and differentiation of astrocytes, their journey from the optic nerve toward the neuroretina, and their involvement in physiological and pathological development of the visual system.Item Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study(Wiley Blackwell (John Wiley & Sons), 2016-04) Rowe, Matthew J.; Kamocki, Krzysztof; Pankajakshan, Divya; Li, Ding; Bruzzaniti, Angela; Thomas, Vinoy; Blanchard, Steve B.; Bottino, Marco C.; Department of Biomedical and Applied Sciences, School of DentistryComposite fibrous electrospun membranes based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt % led to similar stiffness, but more importantly, it led to a significantly stronger (2.37 ± 0.51 N mm) membrane when compared with the commercially available Epiguide® (1.06 ± 0.24 N mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide (14.28%). Cell proliferation assays demonstrated a higher rate of preosteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4- to 5.8-fold) and EpiGuide (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation-a promising attribute in GBR.Item Effects of a checkpoint kinase inhibitor, AZD7762, on tumor suppression and bone remodeling(Spandidos Publications, 2018-09) Wang, Luqi; Wang, Yue; Chen, Andy; Jalali, Aydin; Liu, Shengzhi; Guo, Yunxia; Na, Sungsoo; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyChemotherapy for suppressing tumor growth and metastasis tends to induce various effects on other organs. Using AZD7762, an inhibitor of checkpoint kinase (Chk) 1 and 2, the present study examined its effect on mammary tumor cells in addition to bone cells (osteoclasts, osteoblasts and osteocytes), using monolayer cell cultures and three-dimensional (3D) cell spheroids. The results revealed that AZD7762 blocked the proliferation of 4T1.2 mammary tumor cells and suppressed the development of RAW264.7 pre-osteoclast cells by downregulating nuclear factor of activated T cells cytoplasmic 1. AZD7762 also promoted the mineralization of MC3T3 osteoblast-like cells and 3D bio-printed bone constructs of MLO-A5 osteocyte spheroids. While a Chk1 inhibitor, PD407824, suppressed the proliferation of tumor cells and the differentiation of pre-osteoclasts, its effect on gene expression in osteoblasts was markedly different compared with AZD7762. Western blotting indicated that the stimulating effect of AZD7762 on osteoblast development was associated with the inhibition of Chk2 and the downregulation of cellular tumor antigen p53. The results of the present study indicated that in addition to acting as a tumor suppressor, AZD7762 may prevent bone loss by inhibiting osteoclastogenesis and stimulating osteoblast mineralization.Item The Effects of a Pyk2 Kinase Inhibitor on the Proliferation and Differentiation of Human Dental Pulp Stem Cells(2021) McIntyre, Patrick; Bruzzaniti, Angela; Ehrlich, Ygal; Bringas, Josef; Spolnik, KennethIntroduction: Regenerative endodontic procedures are an effective treatment option for immature teeth with infected necrotic pulps to allow for healing and potential continued root development, yet challenges to ideal treatment outcomes remain. Consistent development of root length and width of dentin remains a challenge, as does development of the pulp-dentin complex. Previous in vitro studies have assessed the role of different growth factors and bioactive molecules in combination with scaffolds to potentially facilitate continued development of the pulp-dentin complex using dental pulp stem cells (DPSCs). The proline-rich tyrosine kinase 2 (Pyk2) is linked with osteoblast activity and the regulation of bone mass. Further, the Pyk2 inhibitor PF-4618433 (PF-46) has been shown in previous studies to enhance osteoblast activity and mineral deposition in vitro. However, whether Pyk2 targeting promotes the osteogenic differentiation of DPSCs remains unknown. Objective: The purpose of this study was to investigate the effect of a Pyk2 inhibitor, PF-46, on the proliferation, differentiation, and mineralization of human DPSCs. Materials and Methods: Human DPSCs were cultured in 24-well plates with α-MEM with 10% FBS, and containing 0 μM (vehicle control) or 0.1 μM, 0.3 μM, or 0.6 μM PF-46. Fresh media and treatments were replaced every 2-3 days. After 1 day incubation, cytotoxic effects were evaluated by using an MTS proliferation assay. After 4 days of treatment, direct cell counting was performed. To induce osteogenic differentiation, ascorbic acid and β-glycerol phosphate were added to the culture media and the DPSCs were cultured with PF-46 for 14 days. Then, an alkaline phosphatase (ALP) assay and mineral deposition assay were performed. Differences between treatment groups were analyzed by a one-way ANOVA followed by pair-wise tests conducted using Tukey’s multiple comparisons procedure with a 5% significance level. Results: The 0.6 μM PF-46 group had a significantly higher cell count, ALP activity and mineral deposition when compared to 0 μM PF-46. The 0.1 and 0.3 μM PF-46 groups also had significantly higher ALP activity compared to the 0 μM PF-46 group after 14 days of incubation. There was a general trend of increased differentiation and mineral deposition as the concentration of PF-46 increased from 0.1 μM to 0.6 μM. Conclusion: There was a general concentration-dependent increase in cell count, differentiation, and mineral deposition by human DPSCs as the concentration of PF-46 increased from 0 μM up to 0.6 μM, with the highest activity observed with 0.6 μM PF-46. Although further research is needed, these results suggest that strategies that target Pyk2 may potentially be used to improve the osteogenic differentiation of DPSCs to aid endodontic regeneration.Item The effects of electromagnetic wave stimulation (EMS) on osteoblast differentiation and activity(2020-06) Pauly, Katherine L.; Spolnik, Kenneth; Bruzzaniti, Angela; Ehrlich, Ygal; Bringas, Josef S.Introduction: The goal of nonsurgical root canal therapy is to reduce the bacterial load within an infected root canal system, and the subsequent objective is to prevent or treat apical periodontitis. Clinical studies have shown more expedient healing of apical periodontitis treated with electromagnetic wave stimulation (EMS) as compared to apical periodontitis not treated with EMS. Stimulation of osteoblasts and growth factors has been shown when EMS was applied to rat calvaria, resulting in increased bone healing. Objective: The purpose of this vitro study was to evaluate the effects of EMS on the proliferation and differentiation of osteoblasts. Using primary neonatal calvaria osteoblast-lineage cells, the effects of different EMS regimens on proliferation, alkaline phosphatase (ALP) activity, and mineral deposition were determined. Materials and Methods: EMS regimen included currents of 0mA, 0.1mA, 1mA, and 10mA delivered for five consecutive 1s pulses per day for one, two, and three days. Cell proliferation was assayed after 1 or 2 days using an MTS assay. Alkaline phosphatase activity and mineral deposition were assayed after culturing the cells in osteogenic media containing ascorbic acid and -glycerol phosphate for 7 days. Comparisons were performed using analysis of variance, with a 5% significance level. Results: There was no statistically significant differences noted in MTS proliferation and mineral deposition between the experiment EMS treatment groups of 0.1, 1.0, and 10.0 mA compared to the control group of 0 mA current on calvaria-derived osteoblast. While there were no statistically significant differences noted in ALP activity in the 0.1, and 1.0 mA EMS groups, compared to 0 mA control, alkaline phosphatase activity was significantly increased in the 10 mA EMS group. Conclusion: There was no significant differences in MTS proliferation and mineral deposition of the EMS group compared to the control group. However, 10 mA EMS favored increased ALP activity suggesting EMS can promote matrix maturation by osteoblasts. Additional in vitro experimental studies, including different stem cell populations, culture duration and EMS treatment regimens are needed to understand the mechanism of action of EMS for future applications in regenerative endodontics.
- «
- 1 (current)
- 2
- 3
- »