- Browse by Subject
Browsing by Subject "Cell Line"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Characterization of the ion transport responses to ADH in the MDCK-C7 cell line(2000-03) Lahr, Thomas F.; Record, Rae D.; Hoover, Diane K.; Hughes, Cynthia L.; Blazer-Yost, BonnieThe Madin-Darby canine kidney (MDCK) cell line expresses many characteristics of the renal collecting duct. The MDCK-C7 subclone forms a high-resistance, hormone-responsive model of the principal cells, which are found in distal sections of the renal tubule. The electrophysiological technique of short-circuit current measurement was used to examine the response to antidiuretic hormone (ADH) in the MDCK-C7 clone. Three discrete electrogenic ion transport phenomena can be distinguished temporally and by the use of inhibitors and effectors. Initially the cells exhibit anion secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). The presence of CFTR was confirmed by immunoprecipitation followed by Western blotting. The CFTR-mediated anion secretion is transient and is followed, in time, by a verapamil- and Ba(+)-sensitive anion secretion or cation absorption and, finally, by Na+ reabsorption via epithelial Na+ channels (ENaC). In contrast to other studies of MDCK cells, we see no indication that the presence of CFTR functionally inhibits ENaC. The characterization of the various ion transport phenomena substantiates this cell line as a model renal epithelium that can be used to study the hormonal and metabolic regulation of ion transport.Item Defective interfering particles of herpes simplex virus type 1(1977) Lo, Tao-La JudyItem Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy(ACS Publications, 2017-06-08) Rietz, Anne; Li, Hongxia; Quist, Kevin M.; Cherry, Jonathan J.; Lorson, Christian L.; Burnett, Barrington; Kern, Nicholas L.; Calder, Alyssa N.; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J.; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A.; Cuny, Gregory D.; Androphy, Elliot J.; Hodgetts, Kevin J.; Dermatology, School of MedicineSpinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.Item Effects of Lipid Interactions on Model Vesicle Engulfment by Alveolar Macrophages(Elsevier B.V., 2014-02-04) Justice, Matthew J.; Petrusca, Daniela N.; Rogozea, Adriana L.; Williams, Justin A.; Schweitzer, Kelly S.; Petrache, Irina; Wassall, Stephen R.; Petrache, Horia I.; Department of Physics, School of ScienceThe engulfment function of macrophages relies on complex molecular interactions involving both lipids and proteins. In particular, the clearance of apoptotic bodies (efferocytosis) is enabled by externalization on the cell target of phosphatidylserine lipids, which activate receptors on macrophages, suggesting that (local) specific lipid-protein interactions are required at least for the initiation of efferocytosis. However, in addition to apoptotic cells, macrophages can engulf foreign bodies that vary substantially in size from a few nanometers to microns, suggesting that nonspecific interactions over a wide range of length scales could be relevant. Here, we use model lipid membranes (made of phosphatidylcholine, phosphatidylserine, and ceramide) and rat alveolar macrophages to show how lipid bilayer properties probed by small-angle x-ray scattering and solid-state 2H NMR correlate with engulfment rates measured by flow cytometry. We find that engulfment of protein-free model lipid vesicles is promoted by the presence of phosphatidylserine lipids but inhibited by ceramide, in accord with a previous study of apoptotic cells. We conclude that the roles of phosphatidylserine and ceramide in phagocytosis is based, at least in part, on lipid-mediated modification of membrane physical properties, including interactions at large length scales as well as local lipid ordering and possible domain formation.Item Functional Effects of Nanoparticle Exposure on Calu-3 Airway Epithelial Cells(2012) Banga, Amiraj; Witzmann, Frank A.; Petrache, Horia I.; Blazer-Yost, BonnieHigh concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.Item Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins(ASPET, 2014-08) Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R.; Pharmacology and Toxicology, School of MedicineVoltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels.Item A high-throughput screen identifies inhibitors of the interaction between the oncogenic transcription factor ERG and the cofactor EWS(Public Library of Science, 2020-09-11) Nicholas, Taylor R.; Meng, Jingwei; Greulich, Benjamin M.; Morris, Teresa Stevie; Hollenhorst, Peter C.; Biochemistry and Molecular Biology, School of MedicineAberrant expression of the transcription factor ERG is a key driving event in approximately one-half of all of prostate cancers. Lacking an enzymatic pocket and mainly disordered, the structure of ERG is difficult to exploit for therapeutic design. We recently identified EWS as a specific interacting partner of ERG that is required for oncogenic function. In this study, we aimed to target this specific protein-protein interaction with small molecules. A high-throughput screening (HTS) strategy was implemented to identify potential protein-protein interaction inhibitors. Secondary assays verified the function of several hit compounds, and one lead compound inhibited ERG-mediated phenotypes in prostate cells. This is the first study aimed at targeting the ERG-EWS protein-protein interaction for the development of a small molecule-based prostate cancer therapy.Item The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B(Public Library of Science, 2018-05-09) Carmichael, Jillian C.; Yokota, Hiroki; Craven, Rebecca C.; Schmitt, Anthony; Wills, John W.; Biomedical Engineering, School of Engineering and TechnologyAll herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.Item Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic β-Cell(American Diabetes Association, 2018-11) Kono, Tatsuyoshi; Tong, Xin; Taleb, Solaema; Bone, Robert N.; Iida, Hitoshi; Lee, Chih-Chun; Sohn, Paul; Gilon, Patrick; Roe, Michael W.; Evans-Molina, Carmella; Medicine, School of MedicineStore-operated Ca2+ entry (SOCE) is a dynamic process that leads to refilling of endoplasmic reticulum (ER) Ca2+ stores through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Pathogenic reductions in β-cell ER Ca2+ have been observed in diabetes. However, a role for impaired SOCE in this phenotype has not been tested. We measured the expression of SOCE molecular components in human and rodent models of diabetes and found a specific reduction in STIM1 mRNA and protein levels in human islets from donors with type 2 diabetes (T2D), islets from hyperglycemic streptozotocin-treated mice, and INS-1 cells (rat insulinoma cells) treated with proinflammatory cytokines and palmitate. Pharmacologic SOCE inhibitors led to impaired islet Ca2+ oscillations and insulin secretion, and these effects were phenocopied by β-cell STIM1 deletion. STIM1 deletion also led to reduced ER Ca2+ storage and increased ER stress, whereas STIM1 gain of function rescued β-cell survival under proinflammatory conditions and improved insulin secretion in human islets from donors with T2D. Taken together, these data suggest that the loss of STIM1 and impaired SOCE contribute to ER Ca2+ dyshomeostasis under diabetic conditions, whereas efforts to restore SOCE-mediated Ca2+ transients may have the potential to improve β-cell health and function.Item Molecular Requirement for Sterols in Herpes Simplex Virus Entry and Infectivity(American Society for Microbiology (ASM), 2014-12) Wudiri, George A.; Pritchard, Suzanne M.; Li, Hong; Liu, Jin; Aguilar, Hector C.; Gilk, Stacey D.; Nicola, Anthony V.; Department of Microbiology & Immunology, IU School of MedicineHerpes simplex virus 1 (HSV-1) required cholesterol or desmosterol for virion-induced membrane fusion. HSV successfully entered DHCR24−/− cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating that entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in diminished HSV-1 entry, suggesting a general sterol requirement for HSV-1 entry and that desmosterol can operate in virus entry. Cholesterol functioned more effectively than desmosterol, suggesting that the hydrocarbon tail of cholesterol influences viral entry.