ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cancer-related cognitive decline"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Associating Persistent Self-Reported Cognitive Decline with Neurocognitive Decline in Older Breast Cancer Survivors Using Machine Learning: The Thinking and Living with Cancer Study
    (Elsevier, 2022) Van Dyk, Kathleen; Ahn, Jaeil; Zhou, Xingtao; Zhai, Wanting; Ahles, Tim A.; Bethea, Traci N.; Carroll, Judith E.; Cohen, Harvey Jay; Dilawari, Asma A.; Graham, Deena; Jacobsen, Paul B.; Jim, Heather; McDonald, Brenna C.; Nakamura, Zev M.; Patel, Sunita K.; Rentscher, Kelly E.; Saykin, Andrew J.; Small, Brent J.; Mandelblatt, Jeanne S.; Root, James C.; Radiology and Imaging Sciences, School of Medicine
    Introduction: Many cancer survivors report cognitive problems following diagnosis and treatment. However, the clinical significance of patient-reported cognitive symptoms early in survivorship can be unclear. We used a machine learning approach to determine the association of persistent self-reported cognitive symptoms two years after diagnosis and neurocognitive test performance in a prospective cohort of older breast cancer survivors. Materials and methods: We enrolled breast cancer survivors with non-metastatic disease (n = 435) and age- and education-matched non-cancer controls (n = 441) between August 2010 and December 2017 and followed until January 2020; we excluded women with neurological disease and all women passed a cognitive screen at enrollment. Women completed the FACT-Cog Perceived Cognitive Impairment (PCI) scale and neurocognitive tests of attention, processing speed, executive function, learning, memory and visuospatial ability, and timed activities of daily living assessments at enrollment (pre-systemic treatment) and annually to 24 months, for a total of 59 individual neurocognitive measures. We defined persistent self-reported cognitive decline as clinically meaningful decline (3.7+ points) on the PCI scale from enrollment to twelve months with persistence to 24 months. Analysis used four machine learning models based on data for change scores (baseline to twelve months) on the 59 neurocognitive measures and measures of depression, anxiety, and fatigue to determine a set of variables that distinguished the 24-month persistent cognitive decline group from non-cancer controls or from survivors without decline. Results: The sample of survivors and controls ranged in age from were ages 60-89. Thirty-three percent of survivors had self-reported cognitive decline at twelve months and two-thirds continued to have persistent decline to 24 months (n = 60). Least Absolute Shrinkage and Selection Operator (LASSO) models distinguished survivors with persistent self-reported declines from controls (AUC = 0.736) and survivors without decline (n = 147; AUC = 0.744). The variables that separated groups were predominantly neurocognitive test performance change scores, including declines in list learning, verbal fluency, and attention measures. Discussion: Machine learning may be useful to further our understanding of cancer-related cognitive decline. Our results suggest that persistent self-reported cognitive problems among older women with breast cancer are associated with a constellation of mild neurocognitive changes warranting clinical attention.
  • Loading...
    Thumbnail Image
    Item
    Plasma levels of interleukin-6 mediate neurocognitive performance in older breast cancer survivors: The Thinking and Living With Cancer study
    (Wiley, 2023) Mandelblatt, Jeanne S.; Small, Brent J.; Zhou, Xingtao; Nakamura, Zev M.; Cohen, Harvey J.; Ahles, Tim A.; Ahn, Jaeil; Bethea, Traci N.; Extermann, Martine; Graham, Deena; Isaacs, Claudine; Jim, Heather S. L.; Jacobsen, Paul B.; McDonald, Brenna C.; Patel, Sunita K.; Rentscher, Kelly E.; Root, James C.; Saykin, Andrew J.; Tometich, Danielle B.; Van Dyk, Kathleen; Zhai, Wanting; Breen, Elizabeth C.; Carroll, Judith E.; Radiology and Imaging Sciences, School of Medicine
    Background: Immune activation/inflammation markers (immune markers) were tested to explain differences in neurocognition among older breast cancer survivors versus noncancer controls. Methods: Women >60 years old with primary breast cancer (stages 0-III) (n = 400) were assessed before systemic therapy with frequency-matched controls (n = 329) and followed annually to 60 months; blood was collected during annual assessments from 2016 to 2020. Neurocognition was measured by tests of attention, processing speed, and executive function (APE). Plasma levels of interleukin-6 (IL-6), IL-8, IL-10, tumor necrosis factor α (TNF-α), and interferon γ were determined using multiplex testing. Mixed linear models were used to compare results of immune marker levels by survivor/control group by time and by controlling for age, racial/ethnic group, cognitive reserve, and study site. Covariate-adjusted multilevel mediation analyses tested whether survivor/control group effects on cognition were explained by immune markers; secondary analyses examined the impact of additional covariates (e.g., comorbidity and obesity) on mediation effects. Results: Participants were aged 60-90 years (mean, 67.7 years). Most survivors had stage I (60.9%) estrogen receptor-positive tumors (87.6%). Survivors had significantly higher IL-6 levels than controls before systemic therapy and at 12, 24, and 60 months (p ≤ .001-.014) but there were no differences for other markers. Survivors had lower adjusted APE scores than controls (p < .05). Levels of IL-6, IL-10, and TNF-α were related to APE, with IL-6 explaining part of the relationship between survivor/control group and APE (p = .01). The magnitude of this mediation effect decreased but remained significant (p = .047) after the consideration of additional covariates. Conclusions: Older breast cancer survivors had worse long-term neurocognitive performance than controls, and this relationship was explained in part by elevated IL-6.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University