- Browse by Subject
Browsing by Subject "Cachexia"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item A TGF-β/KLF10 signaling axis regulates atrophy-associated genes to induce muscle wasting in pancreatic cancer(National Academy of Science, 2023) Dasgupta, Aneesha; Gibbard, Daniel F.; Schmitt, Rebecca E.; Arneson-Wissink, Paige C.; Ducharme, Alexandra M.; Bruinsma, Elizabeth S.; Hawse, John R.; Jatoi, Aminah; Doles, Jason D.; Anatomy, Cell Biology and Physiology, School of MedicineCancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-β), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-β. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-β/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.Item ACVR2B antagonism as a countermeasure to multi‐organ perturbations in metastatic colorectal cancer cachexia(Wiley, 2020-12) Huot, Joshua R.; Pin, Fabrizio; Narasimhan, Ashok; Novinger, Leah J.; Keith, Austin S.; Zimmers, Teresa A.; Willis, Monte S.; Bonetto, Andrea; Surgery, School of MedicineBackground: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. Methods: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. Results: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. Conclusions: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.Item Addressing unmet needs for people with cancer cachexia: recommendations from a multistakeholder workshop(Wiley, 2022-04) Garcia, Jose M.; Dunne, Richard F.; Santiago, Kristen; Martin, Lisa; Birnbaum, Morris J.; Crawford, Jeffrey; Hendifar, Andrew E.; Kochanczyk, Martin; Moravek, Cassadie; Piccinin, Doris; Picozzi, Vincent; Roeland, Eric J.; Selig, Wendy K.D.; Zimmers, Teresa A.; Surgery, School of MedicineItem Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice(Frontiers Media, 2019-11-19) Essex, Alyson L.; Pin, Fabrizio; Huot, Joshua R.; Bonewald, Lynda F.; Plotkin, Lilian I.; Bonetto, Andrea; Anatomy and Cell Biology, School of MedicineChemotherapy is frequently accompanied by several side effects, including nausea, diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that chemotherapy can also play a major role in causing not only cachexia, but also bone loss. This complicates prognosis and survival among cancer patients, affects quality of life, and can increase morbidity and mortality rates. Recent findings suggest that soluble factors released from resorbing bone directly contribute to loss of muscle mass and function secondary to metastatic cancer. However, it remains unknown whether similar mechanisms also take place following treatments with anticancer drugs. In this study, we found that young male CD2F1 mice (8-week old) treated with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of muscle and bone mass. Myotubes exposed to bone conditioned medium from cisplatin-treated mice showed severe atrophy (−33%) suggesting a bone to muscle crosstalk. To test this hypothesis, mice were administered cisplatin in combination with an antiresorptive drug to determine if preservation of bone mass has an effect on muscle mass and strength following chemotherapy treatment. Mice received cisplatin alone or combined with zoledronic acid (ZA; 5 μg/kg), a bisphosphonate routinely used for the treatment of osteoporosis. We found that cisplatin resulted in progressive loss of body weight (−25%), in line with reduced fat (−58%) and lean (−17%) mass. As expected, microCT bone histomorphometry analysis revealed significant reduction in bone mass following administration of chemotherapy, in line with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was protected when cisplatin was administered in combination with ZA. Interestingly, while the animals exposed to chemotherapy presented significant muscle wasting (~-20% vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted in preservation of muscle mass (+12%) and strength (+42%). Altogether, these observations support our hypothesis of bone factors targeting muscle and suggest that pharmacological preservation of bone mass can benefit muscle mass and function following chemotherapy.Item Bone Pain and Muscle Weakness in Cancer Patients(Springer, 2017-04) Milgrom, Daniel P.; Lad, Neha L.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of MedicinePURPOSE OF REVIEW: In this article, we will discuss the current understanding of bone pain and muscle weakness in cancer patients. We will describe the underlying physiology and mechanisms of cancer-induced bone pain (CIBP) and cancer-induced muscle wasting (CIMW), as well as current methods of diagnosis and treatment. We will discuss future therapies and research directions to help patients with these problems. RECENT FINDINGS: There are several pharmacologic therapies that are currently in preclinical and clinical testing that appear to be promising adjuncts to current CIBP and CIMW therapies. Such therapies include resiniferitoxin, which is a targeted inhibitor of noceciptive nerve fibers, and selective androgen receptor modulators, which show promise in increasing lean mass. CIBP and CIMW are significant causes of morbidity in affected patients. Current management is mostly palliative; however, targeted therapies are poised to revolutionize how these problems are treated.Item Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism(Wiley, 2019-01-24) Pin, Fabrizio; Barreto, Rafael; Couch, Marion E.; Bonetto, Andrea; O'Connell, Thomas M.; Otolaryngology -- Head and Neck Surgery, School of MedicineBackground Cancer cachexia is a metabolic disorder involving perturbed energy balance and altered mitochondrial function. Chemotherapy is a primary treatment option for many types of cancer, but there is substantial evidence that some chemotherapeutic agents can also lead to the development and progression of cachexia. In this study, we apply a comprehensive and systems level metabolomics approach to characterize the metabolic perturbations in murine models of cancer-induced and chemotherapy-induced cachexia. Knowledge of the unique pathways through which cancer and chemotherapy drive cachexia is necessary in order to develop effective treatments. Methods The murine Colon26 (C26) adenocarcinoma xenograft model was used to study the metabolic derangements associated with cancer-induced cachexia. In vivo administration of Folfiri (5-fluorouracil, irinotecan, and leucovorin) was used to model chemotherapy-induced cachexia. Comprehensive metabolic profiling was carried out using both nuclear magnetic resonance-based and mass spectrometry-based platforms. Analyses included plasma, muscle, and liver tissue to provide a systems level profiling. Results The study involved four groups of CD2F1 male mice (n = 4–5), including vehicle treated (V), C26 tumour hosts (CC), Folfiri treated (F), and C26 tumour hosts treated with Folfiri (CCF). Significant weight loss including skeletal muscle was observed for each of the experimental groups with the tumour hosts showing the most dramatic change (−3.74 g vs. initial body weight in the CC group). Skeletal muscle loss was evident in all experimental groups compared with V, with the CCF combination resulting in the most severe depletion of quadriceps mass (−38% vs. V; P < 0.001). All experimental groups were characterized by an increased systemic glucose demand as evidenced by decreased levels of circulating glucose (−47% in CC vs. V; P < 0.001) and depletion of liver glucose (−51% in CC vs. V; P < 0.001) and glycogen (−74% in CC vs. V; P < 0.001). The cancer-induced and chemotherapy-induced cachexia models displayed unique alterations in flux through the tricarboxylic acid cycle and β-oxidation pathways. Cancer-induced cachexia was uniquely characterized by a dramatic elevation in low-density lipoprotein particles (+6.9-fold vs. V; P < 0.001) and a significant increase in the inflammatory marker, GlycA (+33% vs. V; P < 0.001). Conclusions The results of this study demonstrated for the first time that cancer-induced and chemotherapy-induced cachexia is characterized by a number of distinct metabolic derangements. Effective therapeutic interventions for cancer-induced and chemotherapy-induced cachexia must take into account the specific metabolic defects imposed by the pathological or pharmacological drivers of cachexia.Item Cancer Cachexia: Involvement of an Expanding Macroenvironment(Elsevier, 2023) Pryce, Benjamin R.; Wang, David J.; Zimmers, Teresa A.; Ostrowski, Michael C.; Guttridge, Denis C.; Surgery, School of MedicineAdvanced cancers often present with the cachexia syndrome that impacts peripheral tissues, leading to involuntary weight loss and reduced prognosis. The central tissues undergoing depletion are skeletal muscle and adipose, but recent findings reveal an expanding tumor macroenvironment involving organ crosstalks that underlie the cachectic state.Item Co-expression based cancer staging and application(Nature Publishing group, 2020-06-30) Yu, Xiangchun; Cao, Sha; Zhou, Yi; Yu, Zhezhou; Xu, Ying; Biochemistry and Molecular Biology, School of MedicineA novel method is developed for predicting the stage of a cancer tissue based on the consistency level between the co-expression patterns in the given sample and samples in a specific stage. The basis for the prediction method is that cancer samples of the same stage share common functionalities as reflected by the co-expression patterns, which are distinct from samples in the other stages. Test results reveal that our prediction results are as good or potentially better than manually annotated stages by cancer pathologists. This new co-expression-based capability enables us to study how functionalities of cancer samples change as they evolve from early to the advanced stage. New and exciting results are discovered through such functional analyses, which offer new insights about what functions tend to be lost at what stage compared to the control tissues and similarly what new functions emerge as a cancer advances. To the best of our knowledge, this new capability represents the first computational method for accurately staging a cancer sample.Item The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia(JoVE, 2016-11-30) Bonetto, Andrea; Rupert, Joseph E.; Barreto, Rafael; Zimmers, Teresa A.; Surgery, School of MedicineCancer cachexia is the progressive loss of skeletal muscle mass and adipose tissue, negative nitrogen balance, anorexia, fatigue, inflammation, and activation of lipolysis and proteolysis systems. Cancer patients with cachexia benefit less from anti-neoplastic therapies and show increased mortality1. Several animal models have been established in order to investigate the molecular causes responsible for body and muscle wasting as a result of tumor growth. Here, we describe methodologies pertaining to a well-characterized model of cancer cachexia: mice bearing the C26 carcinoma2-4. Although this model is heavily used in cachexia research, different approaches make reproducibility a potential issue. The growth of the C26 tumor causes a marked and progressive loss of body and skeletal muscle mass, accompanied by reduced muscle cross-sectional area and muscle strength3-5. Adipose tissue is also lost. Wasting is coincident with elevated circulating levels of pro-inflammatory cytokines, particularly Interleukin-6 (IL-6)3, which is directly, although not entirely, responsible for C26 cachexia. It is well-accepted that a primary mechanism by which the C26 tumor induces muscle tissue depletion is the activation of skeletal muscle proteolytic systems. Thus, expression of muscle-specific ubiquitin ligases, such as atrogin-1/MAFbx and MuRF-1, represent an accepted method for the evaluation of the ongoing muscle catabolism2. Here, we present how to execute this model in a reproducible manner and how to excise several tissues and organs (the liver, spleen, and heart), as well as fat and skeletal muscles (the gastrocnemius, tibialis anterior, and quadriceps). We also provide useful protocols that describe how to perform muscle freezing, sectioning, and fiber size quantification.Item Current Thoughts of Notch’s Role in Myoblast Regulation and Muscle-Associated Disease(MDPI, 2021-11-29) Gerrard, Jeffrey C.; Hay, Jamison P.; Adams, Ryan N.; Williams, James C., III.; Huot, Joshua R.; Weathers, Kaitlin M.; Marino, Joseph S.; Arthur, Susan T.; Surgery, School of MedicineThe evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch's contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch's importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch's contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch's orchestration is useful for developing therapeutic targets for disease.