ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "CD40L"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity
    (Society for Leukocyte Biology, 2016-06) Morris, David L.; Oatmen, Kelsie E.; Mergian, Taleen A.; Cho, Kae Won; DelProposto, Jennifer L.; Singer, Kanakadurga; Evans-Molina, Carmella; O’Rourke, Robert W.; Lumeng, Carey N.; Medicine, School of Medicine
    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice.
  • Loading...
    Thumbnail Image
    Item
    Novel peptide inhibitors targeting CD40 and CD40L interaction: A potential for atherosclerosis therapy
    (Elsevier, 2023-11-14) Solanki, Kundan; Kumar, Ashutosh; Khan, Mohd Shahnawaz; Karthikeyan, Subramani; Atre, Rajat; Zhang, Kam Y. J.; Bezsonov, Evgeny; Obukhov, Alexander G.; Baig, Mirza S.; Anatomy, Cell Biology and Physiology, School of Medicine
    Atherosclerosis is a chronic inflammatory disease characterized by plaque build-up in the arteries, leading to the obstruction of blood flow. Macrophages are the primary immune cells found in the atherosclerotic lesions and are directly involved in atherosclerosis progression. Macrophages are derived from extravasating blood monocytes. The monocytic CD40 receptor is important for monocyte recruitment on the endothelium expressing the CD40 ligand (CD40L). Thus, targeting monocyte/macrophage interaction with the endothelium by inhibiting CD40-CD40L interaction may be a promising strategy for attenuating atherosclerosis. Monoclonal antibodies have been used against this target but shows various complications. We used an array of computer-aided drug discovery tools and molecular docking approaches to design a therapeutic inhibitory peptide that could efficiently bind to the critical residues (82Y, 84D, and 86N) on the CD40 receptor essential for the receptor's binding to CD40L. The initial screen identified a parent peptide with a high binding affinity to CD40, but the peptide exhibited a positive hepatotoxicity score. We then designed several novel peptidomimetic derivatives with higher binding affinities to CD40, good physicochemical properties, and negative hepatotoxicity as compared to the parent peptide. Furthermore, we conducted molecular dynamics simulations for both the apo and complexed forms of the receptor with ligand, and screened peptides to evaluate their stability. The designed peptidomimetic derivatives are promising therapeutics targeting the CD40-CD40L interaction and may potentially be used to attenuate atherosclerosis.
  • Loading...
    Thumbnail Image
    Item
    The effect of LIGHT in inducing maturation of monocyte-derived dendritic cells from MDS patients
    (Springer, 2004) Zou, Gang-Ming; Martinson, Jeff; Hu, Wen-Yang; Tam, Ying; Klingemann, Hans G.; Pediatrics, School of Medicine
    LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-α, but not IL-1β. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.
  • Loading...
    Thumbnail Image
    Item
    Transcription factor regulation of T helper subset function
    (2015-05-01) Awe, Olufolakemi O.; Kaplan, Mark H.; Blum, Janice S.; Zhou, Baohua; Travers, Jeffery B.
    The immune system protects the body from foreign organisms. T cells and B cells are integral components of the ability of the immune system to generate focused immune responses. The development of specialized subsets of T helper cells is governed by transcription factors. Previous work demonstrated a requirement for the transcription factor PU.1 in the development of IL-9-secreting Th9 cells. Work in this dissertation demonstrates that the Th9 subset is not stable in vitro, and that PU.1 expression decreases during long-term culture. To examine a role for PU.1 in Th9-independent immunity we examined a model of multiple sclerosis termed experimental autoimmune encephalomyelitis (EAE). Mice that lack PU.1 expression in T cells (Sfpi1lck-/- mice) demonstrated more severe disease with attenuated recovery compared to control mice, and this was accompanied by an increase of T cells in the central nervous system. We also observed that following multiple routes of immunization Sfpi1lck-/- mice had increased numbers of T follicular helper (Tfh) cells and increased germinal center responses. This correlated with increased expression of the cytokine IL-21 and the surface protein CD40L in T cells that lacked PU.1 expression and resulted in increased numbers of germinal center B cells and antigen-specific antibody titers compared to control mice. The increased germinal center B cells and antibody titers were attenuated with blocking CD40L antibody but not with neutralizing IL-21 antibody. These results suggest that PU.1 limits the expression of CD40L on Tfh cells to regulate the humoral immune response. Together, the data in this dissertation demonstrate Th9-independent functions of PU.1. Moreover, this work shows that transcription factors promoting the development of one subset of T helper cells can simultaneously have negative effects on distinct T cell lineages.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University