Transcription factor regulation of T helper subset function
Date
Authors
Language
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
The immune system protects the body from foreign organisms. T cells and B cells are integral components of the ability of the immune system to generate focused immune responses. The development of specialized subsets of T helper cells is governed by transcription factors. Previous work demonstrated a requirement for the transcription factor PU.1 in the development of IL-9-secreting Th9 cells. Work in this dissertation demonstrates that the Th9 subset is not stable in vitro, and that PU.1 expression decreases during long-term culture. To examine a role for PU.1 in Th9-independent immunity we examined a model of multiple sclerosis termed experimental autoimmune encephalomyelitis (EAE). Mice that lack PU.1 expression in T cells (Sfpi1lck-/- mice) demonstrated more severe disease with attenuated recovery compared to control mice, and this was accompanied by an increase of T cells in the central nervous system. We also observed that following multiple routes of immunization Sfpi1lck-/- mice had increased numbers of T follicular helper (Tfh) cells and increased germinal center responses. This correlated with increased expression of the cytokine IL-21 and the surface protein CD40L in T cells that lacked PU.1 expression and resulted in increased numbers of germinal center B cells and antigen-specific antibody titers compared to control mice. The increased germinal center B cells and antibody titers were attenuated with blocking CD40L antibody but not with neutralizing IL-21 antibody. These results suggest that PU.1 limits the expression of CD40L on Tfh cells to regulate the humoral immune response. Together, the data in this dissertation demonstrate Th9-independent functions of PU.1. Moreover, this work shows that transcription factors promoting the development of one subset of T helper cells can simultaneously have negative effects on distinct T cell lineages.