- Browse by Subject
Browsing by Subject "C. elegans"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item An improved in vivo tethering assay with single molecule FISH reveals that a nematode Nanos enhances reporter expression and mRNA stability(RNA Society, 2021) Doenier, Jonathan; Lynch, Tina R.; Kimble, Judith; Aoki, Scott T.; Biochemistry and Molecular Biology, School of MedicineRobust methods are critical for testing the in vivo regulatory mechanism of RNA binding proteins. Here we report improvement of a protein–mRNA tethering assay to probe the function of an RNA binding protein in its natural context within the C. elegans adult germline. The assay relies on a dual reporter expressing two mRNAs from a single promoter and resolved by trans-splicing. The gfp reporter 3′UTR harbors functional binding elements for λN22 peptide, while the mCherry reporter 3′UTR carries mutated nonfunctional elements. This strategy enables internally controlled quantitation of reporter protein by immunofluorescence and mRNA by smFISH. To test the new system, we analyzed a C. elegans Nanos protein, NOS-3, which serves as a post-transcriptional regulator of germ cell fate. Unexpectedly, tethered NOS-3 enhanced reporter expression. We confirmed this enhancement activity with a second reporter engineered at an endogenous germline gene. NOS-3 enhancement of reporter expression was associated with its amino-terminal intrinsically disordered region, not its carboxy-terminal zinc fingers. RNA quantitation revealed that tethered NOS-3 enhances stability of the reporter mRNA. We suggest that this direct NOS-3 enhancement activity may explain a paradox: Classically Nanos proteins are expected to repress RNA, but nos-3 had been found to promote gld-1 expression, an effect that could be direct. Regardless, the new dual reporter dramatically improves in situ quantitation of reporter expression after RNA binding protein tethering to determine its molecular mechanism in a multicellular tissue.Item The Development of a C. Elegans Model of Nicotine Use and Aversion Resistance(2023-05) Omura, Daniel E.; Neal-Beliveau, Bethany S.; Goodlett, Charles R.; Engleman, Eric A.; Grahame, Nicholas J.Nicotine addiction is an extremely costly and widespread issue that affects millions of people globally and current treatments have relatively low long term efficacy rates. This demonstrates the need for a greater understanding of nicotine addiction and its underlying mechanisms. This study created a C. elegans model of compulsive nicotine use. C. elegans, that were pretreated with nicotine (9.7 μM or 120 μM) from larval stage 4 to gravid adulthood, demonstrated reduced aversion to 10% nonanone in the presence of nicotine compared to untreated worms. The pretreatment concentration of 9.7 μM nicotine was chosen for further study due to its ability to induce aversion resistance without significant changes to locomotor speed, food preference, or benzaldehyde preference. This model was then applied to nicotinic acetylcholine (acr-5, acr-15, acr-16) and dopamine (dop-1, dop-2) receptor knockout mutants to determine the roles of these receptors in the development of aversion resistance. For the acr-5, acr-15, and acr-16 mutants, there was an increase in preference following the administration of 10% nonanone, regardless of pretreatment condition, suggesting that the removal of these receptors induces aversion resistance. For the dop-1 receptor mutant, 10-minute timepoint nicotine preference was reduced following preexposure. For the dop-2 receptor mutant, aversion was enhanced at the 5 mM and 50 mM test concentrations following the administration of 10% nonanone, suggesting that the dop-2 receptor is partially responsible for the development of aversion resistance. Additional research should be conducted to determine the underlying mechanisms of this drug induced aversion resistance. With current the lack of highly efficacious nicotine cessation drugs, this model could be used to test novel therapeutic drugs in a rapid high throughput manner.Item Disruption in A-to-I Editing Levels Affects C. elegans Development More Than a Complete Lack of Editing(Elsevier, 2019-04) Ganem, Nabeel S.; Ben-Asher, Noa; Manning, Aidan C.; Deffit, Sarah N.; Washburn, Michael C.; Wheeler, Emily C.; Yeo, Gene W.; Ben-Naim Zgayer, Orna; Mantsur, Einav; Hundley, Heather A.; Lamm, Ayelet T.A-to-I RNA editing, catalyzed by ADAR proteins, is widespread in eukaryotic transcriptomes. Studies showed that, in C. elegans, ADR-2 can actively deaminate dsRNA, whereas ADR-1 cannot. Therefore, we set out to study the effect of each of the ADAR genes on the RNA editing process. We performed comprehensive phenotypic, transcriptomics, proteomics, and RNA binding screens on worms mutated in a single ADAR gene. We found that ADR-1 mutants exhibit more-severe phenotypes than ADR-2, and some of them are a result of non-editing functions of ADR-1. We also show that ADR-1 significantly binds edited genes and regulates mRNA expression, whereas the effect on protein levels is minor. In addition, ADR-1 primarily promotes editing by ADR-2 at the L4 stage of development. Our results suggest that ADR-1 has a significant role in the RNA editing process and in altering editing levels that affect RNA expression; loss of ADR-1 results in severe phenotypes.Item Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration(BioMed Central, 2018-02-06) Taylor, Laura M.; McMillan, Pamela J.; Liachko, Nicole F.; Strovas, Timothy J.; Ghetti, Bernardino; Bird, Thomas D.; Keene, C. Dirk; Kraemer, Brian C.; Pathology and Laboratory Medicine, School of MedicineBACKGROUND: Progressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer's disease and other tauopathies. METHODS: To further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease. RESULTS: We show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls. CONCLUSIONS: Our findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration.Item The role of SMF 1, SMF-2, SMF-3 in metal-induced whole animal vulnerability and dopamine neuron degeneration in Caenorhabditis elegans(2012-12-04) LeVora, Jennifer K.; Nass, Richard M.; Nicol, Grant D.; Hingtgen, Cynthia M., 1966-The etiology of many neurodegenerative diseases is unknown, but a number of studies indicate that a combination of both genetic and environmental factors contribute to the progression of disease. Exposure to environmental metals, such as Mn2+, Fe2+, Cu2+, and Al3+, has been shown to increase cell death that is characteristic of neurodegenerative disorders such as AD, PD, Wilson’s disease and Menkes disease. These metals are important in numerous biological processes in the brain and their homeostasis is regulated through multiple mechanisms of transport, storage, and secretion. The vertebrate divalent metal transporter-1 (DMT-1) has been implicated in transport and homeostasis of these divalent cations. In these studies I utilize Caenorhabditis elegans (C. elegans) to show that long term exposure to Mn2+ decreases animal viability in a dose-dependent manner, and I demonstrate that C. elegans homologues to DMT-1, SMF-1, SMF-2, and SMF-3, play specific roles in divalent metal ion-induced DA neurodegeneration. I show that SMF-1 contributes to Fe2+-induced DA neuron degeneration, SMF-3 contributes to Al3+-induced DA neuron degeneration, and both SMF-2 and DAT-1 contribute to Cu2+-induced DA neuron cell death. These studies utilize C. elegans as a powerful model to characterize molecules and pathways involved in metal toxicity and metal-induced DA neuron degeneration.Item Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality(2015-12) Rangaraju, Sunitha; Solis, Gregory M.; Thompson, Ryan C.; Gomez-Amaro, Rafael L.; Kurian, Leo; Encalada, Sandra E.; Niculescu, Alexander B., III; Salomon, Daniel R.; Petrascheck, Michael; Department of Psychiatry, IU School of MedicineLongevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality.