The role of SMF 1, SMF-2, SMF-3 in metal-induced whole animal vulnerability and dopamine neuron degeneration in Caenorhabditis elegans

If you need an accessible version of this item, please submit a remediation request.
Date
2012-12-04
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2012
Department
Department of Medical Neuroscience
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The etiology of many neurodegenerative diseases is unknown, but a number of studies indicate that a combination of both genetic and environmental factors contribute to the progression of disease. Exposure to environmental metals, such as Mn2+, Fe2+, Cu2+, and Al3+, has been shown to increase cell death that is characteristic of neurodegenerative disorders such as AD, PD, Wilson’s disease and Menkes disease. These metals are important in numerous biological processes in the brain and their homeostasis is regulated through multiple mechanisms of transport, storage, and secretion. The vertebrate divalent metal transporter-1 (DMT-1) has been implicated in transport and homeostasis of these divalent cations. In these studies I utilize Caenorhabditis elegans (C. elegans) to show that long term exposure to Mn2+ decreases animal viability in a dose-dependent manner, and I demonstrate that C. elegans homologues to DMT-1, SMF-1, SMF-2, and SMF-3, play specific roles in divalent metal ion-induced DA neurodegeneration. I show that SMF-1 contributes to Fe2+-induced DA neuron degeneration, SMF-3 contributes to Al3+-induced DA neuron degeneration, and both SMF-2 and DAT-1 contribute to Cu2+-induced DA neuron cell death. These studies utilize C. elegans as a powerful model to characterize molecules and pathways involved in metal toxicity and metal-induced DA neuron degeneration.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}