- Browse by Subject
Browsing by Subject "Brain-derived neurotrophic factor"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Association of BDNF Val66Met With Tau Hyperphosphorylation and Cognition in Dominantly Inherited Alzheimer Disease(American Medical Association, 2022-03-01) Lim, Yen Ying; Maruff, Paul; Barthélemy, Nicolas R.; Goate, Alison; Hassenstab, Jason; Sato, Chihiro; Fagan, Anne M.; Benzinger, Tammie L. S.; Xiong, Chengjie; Cruchaga, Carlos; Levin, Johannes; Farlow, Martin R.; Graff-Radford, Neill R.; Laske, Christoph; Masters, Colin L.; Salloway, Stephen; Schofield, Peter R.; Morris, John C.; Bateman, Randall J.; McDade, Eric; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineImportance: Allelic variation in the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism moderates increases in cerebrospinal fluid (CSF) levels of tau and phosphorylated tau 181 (p-tau181), measured using immunoassay, and cognitive decline in presymptomatic dominantly inherited Alzheimer disease (DIAD). Advances in mass spectrometry show that CSF tau phosphorylation occupancy at threonine 181 and 217 (p-tau181/tau181, p-tau217/tau217) increases with initial β-amyloid (Aβ) aggregation, while phosphorylation occupancy at threonine 205 (p-tau205/tau205) and level of total tau increase when brain atrophy and clinical symptoms become evident. Objective: To determine whether site-specific tau phosphorylation occupancy (ratio of phosphorylated to unphosphorylated tau) is associated with BDNF Val66Met in presymptomatic and symptomatic DIAD. Design, setting, and participants: This cross-sectional cohort study included participants from the Dominantly Inherited Alzheimer Network (DIAN) and Aβ-positive cognitively normal older adults in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data were collected from 2009 through 2018 at multicenter clinical sites in the United States, United Kingdom, and Australia, with no follow-up. DIAN participants provided a CSF sample and completed clinical and cognitive assessments. Data analysis was conducted between March 2020 and March 2021. Main outcomes and measures: Mass spectrometry analysis was used to determine site-specific tau phosphorylation level; tau levels were also measured using immunoassay. Episodic memory and global cognitive composites were computed. Results: Of 374 study participants, 144 were mutation noncarriers, 156 were presymptomatic mutation carriers, and 74 were symptomatic carriers. Of the 527 participants in the network, 153 were excluded because their CSF sample, BDNF status, or both were unavailable. Also included were 125 Aβ-positive cognitively normal older adults in the ADNI. The mean (SD) age of DIAD participants was 38.7 (10.9) years; 43% were women. The mean (SD) age of participants with preclinical sporadic AD was 74.8 (5.6) years; 52% were women. In presymptomatic mutation carriers, compared with Val66 homozygotes, Met66 carriers showed significantly poorer episodic memory (d = 0.62; 95% CI, 0.28-0.95), lower hippocampal volume (d = 0.40; 95% CI, 0.09-0.71), and higher p-tau217/tau217 (d = 0.64; 95% CI, 0.30-0.97), p-tau181/tau181 (d = 0.65; 95% CI, 0.32-0.99), and mass spectrometry total tau (d = 0.43; 95% CI, 0.10-0.76). In symptomatic mutation carriers, Met66 carriers showed significantly poorer global cognition (d = 1.17; 95% CI, 0.65-1.66) and higher p-tau217/tau217 (d = 0.53; 95% CI, 0.05-1.01), mass spectrometry total tau (d = 0.78; 95% CI, 0.28-1.25), and p-tau205/tau205 (d = 0.97; 95% CI, 0.46-1.45), when compared with Val66 homozygotes. In preclinical sporadic AD, Met66 carriers showed poorer episodic memory (d = 0.39; 95% CI, 0.00-0.77) and higher total tau (d = 0.45; 95% CI, 0.07-0.84) and p-tau181 (d = 0.46; 95% CI, 0.07-0.85). Conclusions and relevance: In DIAD, clinical disease stage and BDNF Met66 were associated with cognitive impairment and levels of site-specific tau phosphorylation. This suggests that pharmacological strategies designed to increase neurotrophic support in the presymptomatic stages of AD may be beneficial.Item Design and Rationale of the Cognitive Intervention to Improve Memory in Heart Failure Patients Study(Wolters Kluwer, 2018-07) Pressler, Susan J.; Giordani, Bruno; Titler, Marita; Gradus-Pizlo, Irmina; Smith, Dean; Dorsey, Susan G.; Gao, Sujuan; Jung, Miyeon; School of NursingBACKGROUND: Memory loss is an independent predictor of mortality among heart failure patients. Twenty-three percent to 50% of heart failure patients have comorbid memory loss, but few interventions are available to treat the memory loss. The aims of this 3-arm randomized controlled trial were to (1) evaluate efficacy of computerized cognitive training intervention using BrainHQ to improve primary outcomes of memory and serum brain-derived neurotrophic factor levels and secondary outcomes of working memory, instrumental activities of daily living, and health-related quality of life among heart failure patients; (2) evaluate incremental cost-effectiveness of BrainHQ; and (3) examine depressive symptoms and genomic moderators of BrainHQ effect. METHODS: A sample of 264 heart failure patients within 4 equal-sized blocks (normal/low baseline cognitive function and gender) will be randomly assigned to (1) BrainHQ, (2) active control computer-based crossword puzzles, and (3) usual care control groups. BrainHQ is an 8-week, 40-hour program individualized to each patient's performance. Data collection will be completed at baseline and at 10 weeks and 4 and 8 months. Descriptive statistics, mixed model analyses, and cost-utility analysis using intent-to-treat approach will be computed. CONCLUSIONS: This research will provide new knowledge about the efficacy of BrainHQ to improve memory and increase serum brain-derived neurotrophic factor levels in heart failure. If efficacious, the intervention will provide a new therapeutic approach that is easy to disseminate to treat a serious comorbid condition of heart failure.Item Evaluating Depressive Symptoms, BDNF Val66Met, and APOE-ε4 as Moderators of Response to Computerized Cognitive Training in Heart Failure(Elsevier, 2023) Pressler, Susan J.; Jung, Miyeon; Giordani, Bruno; Titler, Marita G.; Gradus-Pizlo, Irmina; Reid Lake, Kittie; Wierenga, Kelly L.; Clark, David G.; Perkins, Susan M.; Smith, Dean G.; Mocci, Evelina; Dorsey, Susan G.; School of NursingBackground: Depressive symptoms, brain-derived neurotrophic factor (BDNF) Val66Met, and apolipoprotein (APOE)-ε4 may moderate response to computerized cognitive training (CCT) interventions among patients with heart failure (HF). Objectives: The purpose of this study was to examine moderators of intervention response to CCT over 8 months among patients with HF enrolled in a 3-arm randomized controlled trial. Outcomes were memory, serum BDNF, working memory, instrumental activities of daily living (IADLs), and health-related quality of life (HRQL). Methods: 256 patients with HF were randomized to CCT, computerized crossword puzzles active control, and usual care control groups for 8 weeks. Data were collected at enrollment, baseline, 10 weeks, and 4 and 8 months. Mixed effects models were computed to evaluate moderators. Results: As previously reported, there were no statistically significant group by time effects in outcomes among the 3 groups over 8 months. Tests of moderation indicated that depressive symptoms and presence of BDNF Val66Met and APOE-ε4 were not statistically significant moderators of intervention response in outcomes of delayed recall memory, serum BDNF, working memory, IADLs, and HRQL. In post hoc analysis evaluating baseline global cognitive function, gender, age, and HF severity as moderators, no significant effects were found. HF severity was imbalanced among groups (P = .049) which may have influenced results. Conclusions: Studies are needed to elucidate biological mechanisms of cognitive dysfunction in HF and test novel interventions to improve memory, serum BDNF, working memory, IADLs and HRQL. Patients may need to be stratified or randomized by HF severity within intervention trials.Item The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After Moderate Traumatic Brain Injury(Springer, 2016-04) Zhao, Shu; Gao, Xiang; Dong, Weiren; Chen, Jinhui; Department of Neurological Surgery, IU School of MedicineOur previous research showed that traumatic brain injury (TBI) induced by controlled cortical impact (CCI) not only causes massive cell death, but also results in extensive dendrite degeneration in those spared neurons in the cortex. Cell death and dendrite degeneration in the cortex may contribute to persistent cognitive, sensory, and motor dysfunction. There is still no approach available to prevent cells from death and dendrites from degeneration following TBI. When we treated the animals with a small molecule, 7,8-dihydroxyflavone (DHF) that mimics the function of brain-derived neurotrophic factor (BDNF) through provoking TrkB activation reduced dendrite swellings in the cortex. DHF treatment also prevented dendritic spine loss after TBI. Functional analysis showed that DHF improved rotarod performance on the third day after surgery. These results suggest that although DHF treatment did not significantly reduced neuron death, it prevented dendrites from degenerating and protected dendritic spines against TBI insult. Consequently, DHF can partially improve the behavior outcomes after TBI.