- Browse by Subject
Browsing by Subject "Bone Regeneration"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bone regeneration in novel porous titanium implants(2010) Khouja, Naseeba, 1981-; Chu, Tien-Min Gabriel; Brown, David T.; Platt, Jeffery A., 1958-; Blanchard, Steven B.; Levon, John A.The objective of this study was to evaluate the in vivo performance of the novel press-fit dental implant fabricated via electron beam melting (EBM, Southern Methodist Univ.) and compare it to a commercially-available porous-coated press-fit dental implant (Endopore, Innova Corp.). Twelve cylindrical shaped implants 3 mm in diameter x 5 mm long were made by EBM (Southern Methodist Univ.) using Ti6Al4V ELI alloy. Twelve commercial implants (Endopore, Innova Corp.) of the same geometry were used as controls. Samples were implanted in rabbit tibia and retrieved six weeks postoperatively. Six specimens from each implant type were embedded undecalcified, sectioned, and stained with toluidine blue (Sigma) for histomorphometry analysis. Bone-to-implant contact (BIC) was measured. On the six remaining samples from each implant type, the mechanical properties were evaluated by pushout test on a material testing machine. The samples were loaded at a loading rate of 1 mm/min. The pushout strength was measured and the apparent shear stiffness was calculated. The results were analyzed with a paired-t test. The histology shows osteointegration of surrounding bone with both implant types. Bone was found to grow into the porous space between the beads. Both the Endopore (Innova Corp.) and the EBM (Southern Methodist Univ.) showed similar BIC. The mean BIC for the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implant were 35 ± 6% and 32 ± 9%, respectively. It failed to reach statistical significance (p > 0.05). The peak pushout force for Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implants were 198.80 ± 61.29 N and 243.21 ± 69.75 N, respectively. The apparent shear stiffness between bone and implant for the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) implants were 577.36 ± 129.99 N/mm; and 584.48 ± 146.63 N/mm, respectively. Neither the peak pushout force nor the apparent shear stiffness of the implants was statistically different between the two groups (p > 0.05). The results suggest that the implants manufactured by EBM (Southern Methodist Univ.) perform equally well as the commercial implant Endopore (Innova Corp.) in this current animal model.Item Dimensionally stable and bioactive membrane for guided bone regeneration: An in vitro study(Wiley Blackwell (John Wiley & Sons), 2016-04) Rowe, Matthew J.; Kamocki, Krzysztof; Pankajakshan, Divya; Li, Ding; Bruzzaniti, Angela; Thomas, Vinoy; Blanchard, Steve B.; Bottino, Marco C.; Department of Biomedical and Applied Sciences, School of DentistryComposite fibrous electrospun membranes based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and transmission electron microscopies, which respectively confirmed the submicron fibrous arrangement of the membranes and the successful incorporation of BBG particles. Selected mechanical properties of the membranes were evaluated using the suture pullout test. The addition of BBG at 10 wt % led to similar stiffness, but more importantly, it led to a significantly stronger (2.37 ± 0.51 N mm) membrane when compared with the commercially available Epiguide® (1.06 ± 0.24 N mm) under hydrated conditions. Stability (shrinkage) was determined after incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to that of Epiguide (14.28%). Cell proliferation assays demonstrated a higher rate of preosteoblasts proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4- to 5.8-fold) and EpiGuide (4.5-fold), following 7 days of in vitro culture. Collectively, our results demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and proliferation-a promising attribute in GBR.