- Browse by Subject
Browsing by Subject "Artificial intelligence"
Now showing 1 - 10 of 73
Results Per Page
Sort Options
Item A comparative study of English and Japanese ChatGPT responses to anaesthesia-related medical questions(Elsevier, 2024-06-14) Ando, Kazuo; Sato, Masaki; Wakatsuki, Shin; Nagai, Ryotaro; Chino, Kumiko; Kai, Hinata; Sasaki, Tomomi; Kato, Rie; Phuongtram Nguyen, Teresa; Guo, Nan; Sultan, Pervez; Anesthesia, School of MedicineBackground: The expansion of artificial intelligence (AI) within large language models (LLMs) has the potential to streamline healthcare delivery. Despite the increased use of LLMs, disparities in their performance particularly in different languages, remain underexplored. This study examines the quality of ChatGPT responses in English and Japanese, specifically to questions related to anaesthesiology. Methods: Anaesthesiologists proficient in both languages were recruited as experts in this study. Ten frequently asked questions in anaesthesia were selected and translated for evaluation. Three non-sequential responses from ChatGPT were assessed for content quality (accuracy, comprehensiveness, and safety) and communication quality (understanding, empathy/tone, and ethics) by expert evaluators. Results: Eight anaesthesiologists evaluated English and Japanese LLM responses. The overall quality for all questions combined was higher in English compared with Japanese responses. Content and communication quality were significantly higher in English compared with Japanese LLMs responses (both P<0.001) in all three responses. Comprehensiveness, safety, and understanding were higher scores in English LLM responses. In all three responses, more than half of the evaluators marked overall English responses as better than Japanese responses. Conclusions: English LLM responses to anaesthesia-related frequently asked questions were superior in quality to Japanese responses when assessed by bilingual anaesthesia experts in this report. This study highlights the potential for language-related disparities in healthcare information and the need to improve the quality of AI responses in underrepresented languages. Future studies are needed to explore these disparities in other commonly spoken languages and to compare the performance of different LLMs.Item A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population(Elsevier, 2023-09) Mason, Taylor; Kelly, Kynnedy M.; Eckert, George; Dean, Jeffrey A.; Dundar, M. Murat; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryIntroduction The purpose of the present study was to create a machine learning (ML) algorithm with the ability to predict the extraction/non-extraction decision in a racially and ethnically diverse sample. Methods Data was gathered from the records of 393 patients (200 non-extraction and 193 extraction) from a racially and ethnically diverse population. Four ML models (logistic regression [LR], random forest [RF], support vector machine [SVM], and neural network [NN]) were trained on a training set (70% of samples) and then tested on the remaining samples (30%). The accuracy and precision of the ML model predictions were calculated using the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. The proportion of correct extraction/non-extraction decisions was also calculated. Results The LR, SVM, and NN models performed best, with an AUC of the ROC of 91.0%, 92.5%, and 92.3%, respectively. The overall proportion of correct decisions was 82%, 76%, 83%, and 81% for the LR, RF, SVM, and NN models, respectively. The features found to be most helpful to the ML algorithms in making their decisions were maxillary crowding/spacing, L1-NB (mm), U1-NA (mm), PFH:AFH, and SN-MP(̊), although many other features contributed significantly. Conclusions ML models can predict the extraction decision in a racially and ethnically diverse patient population with a high degree of accuracy and precision. Crowding, sagittal, and vertical characteristics all featured prominently in the hierarchy of components most influential to the ML decision-making process.Item A Metabolomics Approach to Identify Metabolites Associated With Mortality in Patients Receiving Maintenance Hemodialysis(Elsevier, 2024-06-29) Al Awadhi, Solaf; Myint, Leslie; Guallar, Eliseo; Clish, Clary B.; Wulczyn, Kendra E.; Kalim, Sahir; Thadhani, Ravi; Segev, Dorry L.; McAdams DeMarco, Mara; Moe, Sharon M.; Moorthi, Ranjani N.; Hostetter, Thomas H.; Himmelfarb, Jonathan; Meyer, Timothy W.; Powe, Neil R.; Tonelli, Marcello; Rhee, Eugene P.; Shafi, Tariq; Medicine, School of MedicineIntroduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving maintenance hemodialysis. Methods: We measured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis (LUCID) study participants. We assessed the association between metabolites and 1-year mortality, adjusting for age, sex, race, cardiovascular disease, diabetes, body mass index, serum albumin, Kt/Vurea, dialysis duration, and country. We modeled these associations using limma, a metabolite-wise linear model with empirical Bayesian inference, and 2 machine learning (ML) models: Least absolute shrinkage and selection operator (LASSO) and random forest (RF). We accounted for multiple testing using a false discovery rate (pFDR) adjustment. We defined significant mortality-metabolite associations as pFDR < 0.1 in the limma model and metabolites of at least medium importance in both ML models. Results: The mean age of the participants was 64 years, the mean dialysis duration was 35 days, and there were 44 deaths (8.4%) during a 1-year follow-up period. Two metabolites were significantly associated with 1-year mortality. Quinolinate levels (a kynurenine pathway metabolite) were 1.72-fold higher in patients who died within year 1 compared with those who did not (pFDR, 0.009), wheras mesaconate levels (an emerging immunometabolite) were 1.57-fold higher (pFDR, 0.002). An additional 42 metabolites had high importance as per LASSO, 46 per RF, and 9 per both ML models but were not significant per limma. Conclusion: Quinolinate and mesaconate were significantly associated with a 1-year risk of death in incident patients receiving maintenance hemodialysis. External validation of our findings is needed.Item A Novel Machine Learning Model for Predicting Orthodontic Treatment Duration(MDPI, 2023-08-23) Volovic, James; Badirl, Sarkhan; Ahmad, Sunna; Leavit, Landon; Mason, Taylor; Bhamidipalli, Surya Sruthi; Eckert, George; Albright, David; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryIn the field of orthodontics, providing patients with accurate treatment time estimates is of utmost importance. As orthodontic practices continue to evolve and embrace new advancements, incorporating machine learning (ML) methods becomes increasingly valuable in improving orthodontic diagnosis and treatment planning. This study aimed to develop a novel ML model capable of predicting the orthodontic treatment duration based on essential pre-treatment variables. Patients who completed comprehensive orthodontic treatment at the Indiana University School of Dentistry were included in this retrospective study. Fifty-seven pre-treatment variables were collected and used to train and test nine different ML models. The performance of each model was assessed using descriptive statistics, intraclass correlation coefficients, and one-way analysis of variance tests. Random Forest, Lasso, and Elastic Net were found to be the most accurate, with a mean absolute error of 7.27 months in predicting treatment duration. Extraction decision, COVID, intermaxillary relationship, lower incisor position, and additional appliances were identified as important predictors of treatment duration. Overall, this study demonstrates the potential of ML in predicting orthodontic treatment duration using pre-treatment variables.Item Accuracy of a Commercial Large Language Model (ChatGPT) to Perform Disaster Triage of Simulated Patients Using the Simple Triage and Rapid Treatment (START) Protocol: Gage Repeatability and Reproducibility Study(JMIR, 2024-09-30) Franc, Jeffrey Micheal; Hertelendy, Attila Julius; Cheng, Lenard; Hata, Ryan; Verde, Manuela; Emergency Medicine, School of MedicineBackground: The release of ChatGPT (OpenAI) in November 2022 drastically reduced the barrier to using artificial intelligence by allowing a simple web-based text interface to a large language model (LLM). One use case where ChatGPT could be useful is in triaging patients at the site of a disaster using the Simple Triage and Rapid Treatment (START) protocol. However, LLMs experience several common errors including hallucinations (also called confabulations) and prompt dependency. Objective: This study addresses the research problem: "Can ChatGPT adequately triage simulated disaster patients using the START protocol?" by measuring three outcomes: repeatability, reproducibility, and accuracy. Methods: Nine prompts were developed by 5 disaster medicine physicians. A Python script queried ChatGPT Version 4 for each prompt combined with 391 validated simulated patient vignettes. Ten repetitions of each combination were performed for a total of 35,190 simulated triages. A reference standard START triage code for each simulated case was assigned by 2 disaster medicine specialists (JMF and MV), with a third specialist (LC) added if the first two did not agree. Results were evaluated using a gage repeatability and reproducibility study (gage R and R). Repeatability was defined as variation due to repeated use of the same prompt. Reproducibility was defined as variation due to the use of different prompts on the same patient vignette. Accuracy was defined as agreement with the reference standard. Results: Although 35,102 (99.7%) queries returned a valid START score, there was considerable variability. Repeatability (use of the same prompt repeatedly) was 14% of the overall variation. Reproducibility (use of different prompts) was 4.1% of the overall variation. The accuracy of ChatGPT for START was 63.9% with a 32.9% overtriage rate and a 3.1% undertriage rate. Accuracy varied by prompt with a maximum of 71.8% and a minimum of 46.7%. Conclusions: This study indicates that ChatGPT version 4 is insufficient to triage simulated disaster patients via the START protocol. It demonstrated suboptimal repeatability and reproducibility. The overall accuracy of triage was only 63.9%. Health care professionals are advised to exercise caution while using commercial LLMs for vital medical determinations, given that these tools may commonly produce inaccurate data, colloquially referred to as hallucinations or confabulations. Artificial intelligence-guided tools should undergo rigorous statistical evaluation-using methods such as gage R and R-before implementation into clinical settings.Item AI Based Modelling and Optimization of Turning Process(2012-08) Kulkarni, Ruturaj Jayant; El-Mounayri, Hazim; Anwar, Sohel; Wasfy, TamerIn this thesis, Artificial Neural Network (ANN) technique is used to model and simulate the Turning Process. Significant machining parameters (i.e. spindle speed, feed rate, and, depths of cut) and process parameters (surface roughness and cutting forces) are considered. It is shown that Multi-Layer Back Propagation Neural Network is capable to perform this particular task. Design of Experiments approach is used for efficient selection of values of parameters used during experiments to reduce cost and time for experiments. The Particle Swarm Optimization methodology is used for constrained optimization of machining parameters to minimize surface roughness as well as cutting forces. ANN and Particle Swarm Optimization, two computational intelligence techniques when combined together, provide efficient computational strategy for finding optimum solutions. The proposed method is capable of handling multiple parameter optimization problems for processes that have non-linear relationship between input and output parameters e.g. milling, drilling etc. In addition, this methodology provides reliable, fast and efficient tool that can provide suitable solution to many problems faced by manufacturing industry today.Item An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing—Demonstration of a Semi-autonomous Suction Tool(Sage, 2024) Yang, Jing; Barragan, Juan Antonio; Farrow, Jason Michael; Sundaram, Chandru P.; Wachs, Juan P.; Yu, Denny; Urology, School of MedicineObjective: This study developed and evaluated a mental workload-based adaptive automation (MWL-AA) that monitors surgeon cognitive load and assist during cognitively demanding tasks and assists surgeons in robotic-assisted surgery (RAS). Background: The introduction of RAS makes operators overwhelmed. The need for precise, continuous assessment of human mental workload (MWL) states is important to identify when the interventions should be delivered to moderate operators' MWL. Method: The MWL-AA presented in this study was a semi-autonomous suction tool. The first experiment recruited ten participants to perform surgical tasks under different MWL levels. The physiological responses were captured and used to develop a real-time multi-sensing model for MWL detection. The second experiment evaluated the effectiveness of the MWL-AA, where nine brand-new surgical trainees performed the surgical task with and without the MWL-AA. Mixed effect models were used to compare task performance, objective- and subjective-measured MWL. Results: The proposed system predicted high MWL hemorrhage conditions with an accuracy of 77.9%. For the MWL-AA evaluation, the surgeons' gaze behaviors and brain activities suggested lower perceived MWL with MWL-AA than without. This was further supported by lower self-reported MWL and better task performance in the task condition with MWL-AA. Conclusion: A MWL-AA systems can reduce surgeons' workload and improve performance in a high-stress hemorrhaging scenario. Findings highlight the potential of utilizing MWL-AA to enhance the collaboration between the autonomous system and surgeons. Developing a robust and personalized MWL-AA is the first step that can be used do develop additional use cases in future studies. Application: The proposed framework can be expanded and applied to more complex environments to improve human-robot collaboration.Item Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings(MDPI, 2024-03-28) Lindroth, Heidi; Nalaie, Keivan; Raghu, Roshini; Ayala, Ivan N.; Busch, Charles; Bhattacharyya, Anirban; Franco, Pablo Moreno; Diedrich, Daniel A.; Pickering, Brian W.; Herasevich, Vitaly; School of NursingComputer vision (CV), a type of artificial intelligence (AI) that uses digital videos or a sequence of images to recognize content, has been used extensively across industries in recent years. However, in the healthcare industry, its applications are limited by factors like privacy, safety, and ethical concerns. Despite this, CV has the potential to improve patient monitoring, and system efficiencies, while reducing workload. In contrast to previous reviews, we focus on the end-user applications of CV. First, we briefly review and categorize CV applications in other industries (job enhancement, surveillance and monitoring, automation, and augmented reality). We then review the developments of CV in the hospital setting, outpatient, and community settings. The recent advances in monitoring delirium, pain and sedation, patient deterioration, mechanical ventilation, mobility, patient safety, surgical applications, quantification of workload in the hospital, and monitoring for patient events outside the hospital are highlighted. To identify opportunities for future applications, we also completed journey mapping at different system levels. Lastly, we discuss the privacy, safety, and ethical considerations associated with CV and outline processes in algorithm development and testing that limit CV expansion in healthcare. This comprehensive review highlights CV applications and ideas for its expanded use in healthcare.Item Artificial Intelligence Approaches to Assessing Primary Cilia(MyJove Corporation, 2021-05-01) Bansal, Ruchi; Engle, Staci E.; Kamba, Tisianna K.; Brewer, Kathryn M.; Lewis, Wesley R.; Berbari, Nicolas F.; Biology, School of ScienceCilia are microtubule based cellular appendages that function as signaling centers for a diversity of signaling pathways in many mammalian cell types. Cilia length is highly conserved, tightly regulated, and varies between different cell types and tissues and has been implicated in directly impacting their signaling capacity. For example, cilia have been shown to alter their lengths in response to activation of ciliary G protein-coupled receptors. However, accurately and reproducibly measuring the lengths of numerous cilia is a time-consuming and labor-intensive procedure. Current approaches are also error and bias prone. Artificial intelligence (Ai) programs can be utilized to overcome many of these challenges due to capabilities that permit assimilation, manipulation, and optimization of extensive data sets. Here, we demonstrate that an Ai module can be trained to recognize cilia in images from both in vivo and in vitro samples. After using the trained Ai to identify cilia, we are able to design and rapidly utilize applications that analyze hundreds of cilia in a single sample for length, fluorescence intensity and co-localization. This unbiased approach increased our confidence and rigor when comparing samples from different primary neuronal preps in vitro as well as across different brain regions within an animal and between animals. Moreover, this technique can be used to reliably analyze cilia dynamics from any cell type and tissue in a high-throughput manner across multiple samples and treatment groups. Ultimately, Ai-based approaches will likely become standard as most fields move toward less biased and more reproducible approaches for image acquisition and analysis.Item Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Cancer: Where Are We Now and What Does the Future Entail?(MDPI, 2022-12-16) Dahiya, Dushyant Singh; Al-Haddad, Mohammad; Chandan, Saurabh; Gangwani, Manesh Kumar; Aziz, Muhammad; Mohan, Babu P.; Ramai, Daryl; Canakis, Andrew; Bapaye, Jay; Sharma, Neil; Medicine, School of MedicinePancreatic cancer is a highly lethal disease associated with significant morbidity and mortality. In the United States (US), the overall 5-year relative survival rate for pancreatic cancer during the 2012–2018 period was 11.5%. However, the cancer stage at diagnosis strongly influences relative survival in these patients. Per the National Cancer Institute (NCI) statistics for 2012–2018, the 5-year relative survival rate for patients with localized disease was 43.9%, while it was 3.1% for patients with distant metastasis. The poor survival rates are primarily due to the late development of clinical signs and symptoms. Hence, early diagnosis is critical in improving treatment outcomes. In recent years, artificial intelligence (AI) has gained immense popularity in gastroenterology. AI-assisted endoscopic ultrasound (EUS) models have been touted as a breakthrough in the early detection of pancreatic cancer. These models may also accurately differentiate pancreatic cancer from chronic pancreatitis and autoimmune pancreatitis, which mimics pancreatic cancer on radiological imaging. In this review, we detail the application of AI-assisted EUS models for pancreatic cancer detection. We also highlight the utility of AI-assisted EUS models in differentiating pancreatic cancer from radiological mimickers. Furthermore, we discuss the current limitations and future applications of AI technology in EUS for pancreatic cancers.