- Browse by Subject
Browsing by Subject "Adhesion"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item CD133 Promotes Adhesion to the Ovarian Cancer Metastatic Niche(Libertas Academica, 2018-04-09) Roy, Lynn; Bobbs, Alexander; Sattler, Rachel; Kurkewich, Jeffrey L; Dausinas, Paige B.; Nallathamby, Prakash; Cowden Dahl, Karen D.; Biochemistry and Molecular Biology, School of MedicineCancer stem cells (CSCs) are an attractive therapeutic target due to their predicted role in both metastasis and chemoresistance. One of the most commonly agreed on markers for ovarian CSCs is the cell surface protein CD133. CD133+ ovarian CSCs have increased tumorigenicity, resistance to chemotherapy, and increased metastasis. Therefore, we were interested in defining how CD133 is regulated and whether it has a role in tumor metastasis. Previously we found that overexpression of the transcription factor, ARID3B, increased the expression of PROM1 (CD133 gene) in ovarian cancer cells in vitro and in xenograft tumors. We report that ARID3B directly regulates PROM1 expression. Importantly, in a xenograft mouse model of ovarian cancer, knockdown of PROM1 in cells expressing exogenous ARID3B resulted in increased survival time compared with cells expressing ARID3B and a control short hairpin RNA. This indicated that ARID3B regulation of PROM1 is critical for tumor growth. Moreover, we hypothesized that CD133 may affect metastatic spread. Given that the peritoneal mesothelium is a major site of ovarian cancer metastasis, we explored the role of PROM1 in mesothelial attachment. PROM1 expression increased adhesion to mesothelium in vitro and ex vivo. Collectively, our work demonstrates that ARID3B regulates PROM1 adhesion to the ovarian cancer metastatic niche.Item Hydrophilic polymer‐coated PVC surface for reduced cell and bacterial adhesions(Wiley, 2022) Almousa, Rashed; Wen, Xin; Na, Sungsoo; Anderson, Gregory; Xie, Dong; Biology, School of ScienceHydrophilic polymers are very useful in biomedical applications. In this study, biocompatible polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) polymers end‐capped with succinimidyl groups were either modified or synthesised and attached to polyvinylchloride surfaces. The modified surfaces were evaluated with cell adhesion and bacterial adhesion. 3T3 mouse fibroblast cells and three bacteria species were used to evaluate surface adhesion activity. Results showed that the modified surface exhibited significantly reduced 3T3 cell adhesion with a 50%–69% decrease for PEG and a 64%–81% for PVP, as compared to unmodified polyvinylchloride. The modified surface also showed significantly reduced bacterial attachment with 22%–78%, 18%–76% and 20%– 75% decrease for PEG and 22%–76%, 18%–76% and 20%–73% for PVP to Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, as compared to unmodified polyvinylchloride. It seems that an appropriate chain length or molecular weight (neither the longest nor the shortest chain length) determines the lowest cell and bacterial adhesion in terms of PEG. On the other hand, a mixture of polymers with different chain lengths exhibited the lowest cell and bacterial adhesion in terms of PVP.Item The N2N3 domains of ClfA, FnbpA and FnbpB in Staphylococcus aureus bind to human complement factor H, and their antibodies enhance the bactericidal capability of human blood(Oxford University Press, 2021) Mao, Xinrui; Kim, Junghyun; Zhang, QingFeng; Jiang, TingTing; Ahn, Dong Ho; Jung, Yunjin; Matsushita, Misao; Bae, Taeok; Lee, Bok Luel; Microbiology and Immunology, School of MedicineIn the complement system, the opsonin C3b binds to the bacterial cell surface and mediates the opsonophagocytosis. However, the cell-wall protein SdrE of Staphylococcus aureus inhibits the C3b activity by recruiting the complement regulatory protein factor H (fH). SdrE binds to fH via its N-terminal N2N3 domain, which are also found in six other staphylococcal cell-wall proteins. In this study, we report that not only the N2N3 domain of SdrE but also those of ClfA, FnbpA and FnbpB can bind to fH. When immobilized on a microplate, the N2N3 domains recruited fH and enhanced the factor I (fI)-mediated cleavage of C3b. When mixed with fH and S. aureus cells, the N2N3 domains inhibited the fH binding to S. aureus cells and reduced the fI-mediated C3b cleavage on the bacterial cell surface. The F(ab)'2 fragments of the rabbit N2N3 antibodies also inhibited the fH binding to the S. aureus cell surface. When added to human blood, the N2N3 antibodies or the N2N3 domain proteins significantly increased the bactericidal activity. Based on these results, we conclude that, in S. aureus, not only SdrE but also ClfA, FnbpA and FnbpB can contribute to the inhibition of C3b-mediated opsonophagocytosis.Item Overexpression of FRA1 (FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression(MDPI, 2023) Al-khayyat, Wuroud; Pirkkanen, Jake; Dougherty, Jessica; Laframboise, Taylor; Dickinson, Noah; Khaper, Neelam; Lees, Simon J.; Mendonca, Marc S.; Boreham, Douglas R.; Tai, Tze Chun; Thome, Christopher; Tharmalingam, Sujeenthar; Radiation Oncology, School of MedicineFRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2–3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.Item Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing(Elsevier, 2020) Nikoloudaki, Georgia; Snider, Paige; Simmons, Olga; Conway, Simon J.; Hamilton, Douglas W.; Pediatrics, School of MedicineAlthough the matricellular protein periostin is prominently upregulated in skin and gingival healing, it plays contrasting roles in myofibroblast differentiation and matrix synthesis respectively. Palatal healing is associated with scarring that can alter or restrict maxilla growth, but the expression pattern and contribution of periostin in palatal healing is unknown. Using periostin-knockout (Postn-/-) and wild-type (WT) mice, the contribution of periostin to palatal healing was investigated through 1.5 mm full-thickness excisional wounds in the hard palate. In WT mice, periostin was upregulated 6 days post-wounding, with mRNA levels peaking at day 12. Genetic deletion of periostin significantly reduced wound closure rates compared to WT mice. Absence of periostin reduced mRNA levels of pivotal genes in wound repair, including α-SMA/acta2, fibronectin and βigh3. Recruitment of fibroblasts and inflammatory cells, as visualized by immunofluorescent staining for fibroblast specific factor-1, vimentin, and macrophages markers Arginase-1 and iNOS was also impaired in Postn-/-, but not WT mice. Palatal fibroblasts isolated from the hard palate of mice were cultured on collagen gels and prefabricated silicon substrates with varying stiffness. Postn-/- fibroblasts showed a significantly reduced ability to contract a collagen gel, which was rescued by the exogenous addition of recombinant periostin. As the stiffness increased, Postn-/- fibroblasts increasingly differentiated into myofibroblasts, but not to the same degree as the WT. Pharmacological inhibition of Rac rescued the deficient myofibroblastic phenotype of Postn-/- cells. Low stiffness substrates (0.2 kPa) resulted in upregulation of fibronectin in WT cells, an effect which was significantly reduced in Postn-/- cells. Quantification of immunostaining for vinculin and integrinβ1 adhesions revealed that Periostin is required for the formation of focal and fibrillar adhesions in mPFBs. Our results suggest that periostin modulates myofibroblast differentiation and contraction via integrinβ1/RhoA pathway, and fibronectin synthesis in an ECM stiffness dependent manner in palatal healing.Item Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism(American Society for Biochemistry and Molecular Biology, 2015-05-01) Wu, Yidi; Gunst, Susan J.; Department of Cellular & Integrative Physiology, IU School of MedicineVasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.