- Browse by Subject
Browsing by Subject "Additive Manufacturing"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Design of Self-supported 3D Printed Parts for Fused Deposition Modeling(2016) Lischke, Fabian; Tovar, Andres; Anwar, Sohel; Jones, Alan S.One of the primary challenges faced in Additive Manufacturing (AM) is reducing the overall cost and printing time. A critical factor in cost and time reduction is post-processing of 3D printed (3DP) parts, which includes removing support structures. Support is needed to prevent the collapse of the part or certain areas under its own weight during the 3D printing process. Currently, the design of self-supported 3DP parts follows experimental trials. A trial and error process is needed to produce high quality parts by Fused Depositing Modeling (FDM). An example for a chamfer angle, is the common use of 45 degree angle in the AM process. Surfaces that are more flat show defects than inclined surfaces, and therefore a numerical model is needed. The model can predict the problematic areas at a print, reducing the experimental prints and providing a higher number of usable parts. Physical-based models have not been established due to the generally unknown properties of the material during the AM process. With simulations it is possible to simulate the part at different temperatures with a variety of other parameters that have influence on the behavior of the model. In this research, analytic calculations and physical tests are carried out to determine the material properties of the thermoplastic polymer Acrylonitrile - Butadiene - Styrene (ABS) for FDM at the time of extrusion. This means that the ABS is going to be extruded at 200C to 245C and is a viscus material during part construction. Using the results from the physical and analytical models, i.e., Timoshenko’s modified beam theory for micro structures, a numerical material model is established to simulate the filament deformation once it is deposited onto the part. Experiments were also used to find the threshold for different geometric specifications, which could then be applied to the numerical model to improve the accuracy of the simulation. The result of the nonlinear finite element analysis is compared to experiments to show the correlation between the prediction of deflection in simulation and the actual deflection measured in physical experiments. A case study was conducted using an application that optimizes topology of complex geometries. After modeling and simulating the optimized part, areas of defect and errors were determined in the simulation, then verified and and measured with actual 3D prints.Item Designing a Low-Cost, Light-Weight Vehicle Using Additive Manufacturing(Office of the Vice Chancellor for Research, 2015-04-17) Golub, Michael; Zhang, JingThe Indiana University-Purdue University Indianapolis (IUPUI) Jaguar team participates in several academic competitions. Both the SAE Clean Snowmobile Challenge and the Shell Ecomarathon benefit from reducing weight to the competition vehicles. Using a purpose-built 3D printer the team designed several parts for the vehicles to reduce weight and become more competitive. The re-engineered vehicles have reduced weight which makes the vehicles more fuel efficient thus environmental friendly without compromising the vehicle performance.Item Extrusion Based Ceramic 3D Printing - Printer Development, Part Characterization, and Model-Based Systems Engineering Analysis(2020-12) Pai Raikar, Piyush Shrihari; Zhang, Jing; Agarwal, Mangilal; Anasori, BabakCeramics have been extensively used in aerospace, automotive, medical, and energy industries due to their unique combination of mechanical, thermal, and chemical properties. The objective of this thesis is to develop an extrusion based ceramic 3D printing process to digitally produce a casting mold. To achieve the objective, an in-house designed ceramic 3D printer was developed by converting a filament based plastic 3D printer. For mold making applications, zircon was selected because it is an ultra-high temperature ceramic with high toughness and good refractory properties. Additionally, alumina, bioglass, and zirconia slurries were formulated and used as the feedstock material for the ceramic 3D printer. The developed 3D printing system was used to demonstrate successful printing of special feature parts such as thin-walled high aspect ratio structures and biomimetically inspired complex structures. Also, proof of concept with regard to the application of 3D printing for producing zircon molds and casting of metal parts was also successfully demonstrated. To characterize the printed parts, microhardness test, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were conducted. The zircon samples showed an increase in hardness value with an initial increase in heat treatment temperature followed by a drop due to the development of porosity in the microstructure, caused by the decomposition of the binder. The peak hardness value for zircon was observed to be 101±10 HV0.2. Similarly, the microhardness values of the other 3D printed ceramic specimens were observed to increase from 37±3 to 112±5 HV0.2 for alumina, 23±5 to 35±1 HV0.2 for bioglass, and 22±5 to 31±3 HV0.2 for zirconia, before and after the heat-treatment process, respectively. Finally, a system model for the ceramic 3D printing system was developed through the application of the model-based systems engineering (MBSE) approach using the MagicGrid framework. Through the system engineering effort, a logical level solution architecture was modeled, which captured the different system requirements, the system behaviors, and the system functionalities. Also, a traceability matrix for the system from a very abstract logical level to the definition of physical requirements for the subsystems was demonstrated.Item A Framework for Optimizing the Design of Injection Molds with Conformal Cooling for Additive Manufacturing(2015-01-01) Wu, Tong; Jahan, Suchana A.; Kumaar, Praveen; Tovar, Andres; El-Mounayri, Hazim; Zhang, Yi; Zhang, Jing; Acheson, Doug; Brand, Kim; Nalim, M. RaziThis work presents a framework for optimizing additive manufacturing of plastic injection molds. The proposed system consists of three modules, namely process and material modeling, multi-scale topology optimization, and experimental testing, calibration and validation. Advanced numerical simulation is implemented for a typical die with conformal cooling channels to predict cycle time, part quality and tooling life. A multi-scale thermo-mechanical topology optimization algorithm is being developed to minimize the die weight and enhance its thermal performance. The technique is implemented for simple shapes for validation before it is applied to dies with conformal cooling in future work. Finally, material modeling using simulation as well as design of experiments is underway for obtaining the material properties and their variations.Item Modeling Fatigue Behavior of 3D Printed Titanium Alloys(2024-08) Kulkarni, Sanket; Zhang , Jing; Agarwal, Mangilal; Dalir, HamidRepeated loading and unloading cycles lead to the formation of strain in the material which causes initiation of the crack formation this phenomenon is called fatigue. Fatigue properties are critical for structures subject to cyclic load; hence fatigue analysis is used to predict the life of the material. Fatigue analysis plays an important role in optimizing the design of the 3D printed material and predicting the fatigue life of the 3D printed component. The main objective of this thesis is to predict the fatigue behavior of different microstructures of Ti-64 titanium alloy by using the PRISMS-Fatigue open-source framework. To achieve this goal Ti-64 microstructure models were created using programming scripts, then the structures were exported to a finite element visualization software package, with all the required properties embedded in the pipeline. The PRISMS-Fatigue framework is used to conduct a fatigue analysis on 3D printed materials, using the Fatigue Indicator Parameters (FIP), which measure the driving force of fatigue crack formation in the microstructurally small crack growth. Three different microstructures, i.e., cubic equiaxed, random equiaxed, and rolled equiaxed microstructures, are analyzed. The FIP results show that the cubic equiaxed grains have the best fatigue resistance due to their isotropic structural characteristics. Additionally, the grain size effect using 1 and 10 micrometers is investigated. The results show that the 1 micrometer grain size cubic equiaxed microstructure has a better fatigue resistance because as grains are small and they have a higher mechanical strength.Item A study on the material characterization and finite element analysis of digital materials and their applications(2017-12) Lopez, Eduardo Salcedo; Ryu, Jong E.; Tovar, Andres; Wagner, DianeMaterial jetting (MJ) additive manufacturing (AM) has experienced an increased adoption in several industry areas and as well as research applications. One of MJ’s distinct benefits is the ability to print tunable composites, digital materials (DM) by carefully adjusting the ratio of droplets of heterogeneous base-polymeric inks. However, the lack of material information usable in computer simulations has hampered its acceptance in some end-use applications. For these materials to be used in Finite Element Analysis (FEA) simulations the mechanical properties of the DMs need to be characterized into usable material models. DMs printable with an MJ printer has a wide variety of materials properties, ranging from flexible silicone rubber to rigid Acrylonitrile Butadiene Styrene (ABS). Therefore, to cohesively express the mechanical behavior of the DMs it is necessary to utilize non-linear material models. The objective this research is to conduct physical testing to characterize the mechanical behavior of DMs printable with an MJ. Subsequently, to validate the effectiveness of the material models for multi-DM prints. Utilizing the newly characterized material models two use cases were investigated, with the goal of improving the performance of printed parts through simulation. In this study, an MJ printer was used to fabricate the test specimens as well as the components used in the use case studies. The study was focused on the family of six DMs printable from the mixture of the base polymers Tango Black+ (TB+) and Vero White+ (VW+). To characterize the mechanical properties of the materials a tensile test was conducted utilizing the KS-M6518 standard as a basis. The mechanical properties of the DMs were then fitted into four non-linear models and the results compared. The fitted models were, the Neo Hookean model, a two-parameter, three-parameter, and a five-parameter Mooney Rivlin model. To confidently use the material models for multi-DM prints FEA simulations need to validate the accuracy to which they can predict the deformation of the samples under load. To compare the results of the computer simulations and the physical test, strain maps for both results were analyzed. Four different test specimens were printed and tested. A baseline single material samples were compared to three multi-material samples with different embedded structures. The results confirmed the validity of the material models even when used for multi-DM prints. The recently characterized models are utilized in two use case studies which showcase the potential of DMs. The first use case was focused on printing multi-DM substrates for the use of stretchable electronics. The second use case investigated the benefits of utilizing multiple materials to create 3D conductive traces utilizing a new method, the “swollen-off” method. Both case studies showed the benefits of utilizing DMs as well as the applicability of the material models in predictive simulations.Item The effects of manufacturing technologies on the surface accuracy of CAD-CAM occlusal splints(Wiley, 2023-10) Orgev, Ahmet; Levon, John A.; Chu, Tien-Min G.; Morton, Dean; Lin, Wei-Shao; Prosthodontics, School of DentistryPurpose To investigate the effects of the manufacturing technologies on the surface (cameo and intaglio) accuracy (trueness and precision) of computer-aided design and computer-aided manufacturing (CAD-CAM) occlusal splints. Materials and methods The digital design of the master occlusal splint was designed in a CAD software program. Six groups (n = 10) were tested in this study, including Group 1 – Milling (Wax), Group 2 – Heat-polymerizing, Group 3 – Milling (M series), Group 4 – Milling (DWX-51/52D), Group 5 – 3D-printing (Cares P30), and Group 6 – 3D-printing (M2). The study samples were placed in a scanning jig fabricated from putty silicone and Type III dental stone. The study samples were then scanned with a laboratory scanner at the intaglio and cameo surfaces, and the scanned files were exported in standard tessellation language (STL) file format. The master occlusal splint STL file, was used as a reference to compare with all scanned samples at the intaglio and cameo surfaces in a surface matching software program. Root mean square (RMS, measured in mm, absolute value) values were calculated by the software for accuracy comparisons. Group means were used as the representation of trueness, and the standard deviation for each group was calculated as a measure of precision. Color maps were recorded to visualize the areas of deviation between study samples and the master occlusal splint file. The data were normalized and transformed to rank scores, and one-way ANOVA was used to test for the differences between the groups. Pairwise comparisons were made between different groups. Fishers least square differences were used to account for the family-wise error rate. A 5% significance level was used for all the tests. Results The null hypotheses were rejected. The manufacturing technologies significantly affected the trueness of occlusal splints at both intaglio and cameo surfaces (p < 0.001). At the cameo surfaces, Group 1 – Milling (Wax) (0.03 ± 0.02 mm), Group 3 – Milling (M series) (0.04 ± 0.01 mm), and Group 4 – Milling (DWX-51/52D) (0.04 ± 0.01 mm) had the smallest mean RMS values and highest trueness. Group 3 had the smallest standard deviation and highest precision among all groups (p < 0.001, except p = 0.005 when compared with Group 2). Group 5 had the largest standard deviation and lowest precision among all groups (p < 0.001). At the intaglio surfaces, Group 1 – Milling (Wax) (0.06 ± 0.01 mm) had the smallest RMS values and highest trueness among all groups (p < 0.001), and Group 2 – Heat-polymerizing (0.20 ± 0.03 mm) and Group 5 – 3D-printing (Cares P30) (0.15 ± 0.05 mm) had significantly larger mean RMS and standard deviation values than all other groups (p < 0.001), with lowest trueness and precision. In the color maps, Group 2 – Heat-polymerizing and Group 5 – 3D-printing (Cares P30) showed the most discrepancies with yellow and red (positive discrepancies) in most areas, and Group 1 – Milling (Wax) showed the best and most uniform surface matching with the most area in green. Conclusion The manufacturing technologies significantly affected the trueness and precision of occlusal splints at both intaglio and cameo surfaces. The 5-axis milling units and industrial-level CLIP 3D-printer could be considered to achieve surface accuracy of occlusal splints.Item Unified Tertiary and Secondary Creep Modeling of Additively Manufactured Nickel-Based Superalloys(2021-08) Dhamade, Harshal Ghanshyam; Zhang, Jing; Tovar, Andres; Nematollahi, KhosrowAdditively manufactured (AM) metals have been increasingly fabricated for structural applications. However, a major hurdle preventing their extensive application is lack of understanding of their mechanical properties. To address this issue, the objective of this research is to develop a computational model to simulate the creep behavior of nickel alloy 718 manufactured using the laser powder bed fusion (L-PBF) additive manufacturing process. A finite element (FE) model with a subroutine is created for simulating the creep mechanism for 3D printed nickel alloy 718 components. A continuum damage mechanics (CDM) approach is employed by implementing a user defined subroutine formulated to accurately capture the creep mechanisms. Using a calibration code, the material constants are determined. The secondary creep and damage constants are derived using the parameter fitting on the experimental data found in literature. The developed FE model is capable to predict the creep deformation, damage evolution, and creep-rupture life. Creep damage and rupture is simulated as defined by the CDM theory. The predicted results from the CDM model compare well with experimental data, which are collected from literature for L-PBF manufactured nickel alloy 718 of creep deformation and creep rupture, at different levels of temperature and stress. Using the multi-regime Liu-Murakami (L-M) and Kachanov-Rabotnov (K-R) isotropic creep damage formulation, creep deformation and rupture tests of both the secondary and tertiary creep behaviors are modeled. A single element FE model is used to validate the model constants. The model shows good agreement with the traditionally wrought manufactured 316 stainless steel and nickel alloy 718 experimental data collected from the literature. Moreover, a full-scale axisymmetric FE model is used to simulate the creep test and the capacity of the model to predict necking, creep damage, and creep-rupture life for L-PBF manufactured nickel alloy 718. The model predictions are then compared to the experimental creep data, with satisfactory agreement. In summary, the model developed in this work can reliably predict the creep behavior for 3D printed metals under uniaxial tensile and high temperature conditions.