Unified Tertiary and Secondary Creep Modeling of Additively Manufactured Nickel-Based Superalloys

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.M.E.
Degree Year
2021
Department
Mechanical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Additively manufactured (AM) metals have been increasingly fabricated for structural applications. However, a major hurdle preventing their extensive application is lack of understanding of their mechanical properties. To address this issue, the objective of this research is to develop a computational model to simulate the creep behavior of nickel alloy 718 manufactured using the laser powder bed fusion (L-PBF) additive manufacturing process. A finite element (FE) model with a subroutine is created for simulating the creep mechanism for 3D printed nickel alloy 718 components. A continuum damage mechanics (CDM) approach is employed by implementing a user defined subroutine formulated to accurately capture the creep mechanisms. Using a calibration code, the material constants are determined. The secondary creep and damage constants are derived using the parameter fitting on the experimental data found in literature. The developed FE model is capable to predict the creep deformation, damage evolution, and creep-rupture life. Creep damage and rupture is simulated as defined by the CDM theory. The predicted results from the CDM model compare well with experimental data, which are collected from literature for L-PBF manufactured nickel alloy 718 of creep deformation and creep rupture, at different levels of temperature and stress. Using the multi-regime Liu-Murakami (L-M) and Kachanov-Rabotnov (K-R) isotropic creep damage formulation, creep deformation and rupture tests of both the secondary and tertiary creep behaviors are modeled. A single element FE model is used to validate the model constants. The model shows good agreement with the traditionally wrought manufactured 316 stainless steel and nickel alloy 718 experimental data collected from the literature. Moreover, a full-scale axisymmetric FE model is used to simulate the creep test and the capacity of the model to predict necking, creep damage, and creep-rupture life for L-PBF manufactured nickel alloy 718. The model predictions are then compared to the experimental creep data, with satisfactory agreement. In summary, the model developed in this work can reliably predict the creep behavior for 3D printed metals under uniaxial tensile and high temperature conditions.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}