- Browse by Subject
Department of Technology Leadership & Communication
Permanent URI for this community
Browse
Browsing Department of Technology Leadership & Communication by Subject "Academic Standards"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item An Evaluation of a Research Experience Traineeship (RET) Program for Integrating Nanotechnology into Pre-College Curriculum(2017-06-24) Hess, Justin L.; Feldhaus, Charles; P.e, Maher E. Rizkalla; Agarwal, Mangilal; Technology and Leadership Communication, School of Engineering and TechnologyNanotechnology has become a national focus throughout the United States with more than 24 billion USD of cumulative federal support towards nanotechnology research and development since 2001. In the last 20 years, R&D in this space has led to a number of revolutions in electronics, photovoltaics, manufacturing, medicine and much more. One of the primary goals of this federal funding, as described by the inter-governmental body, the Committee on Technology Subcommittee on Nanoscale Science, Engineering, and Technology (NSET), has been to develop educational resources that will ultimately lead to a skilled workforce who will continually advance the state of the art of nanotechnology. This study explores the impact of one summer’s implementation of an NSF-funded Research Experiences for Teachers professional development K-12 program designed towards this end. Specifically, the Research Experiences for Teacher Advancement in Nanotechnology (RETAIN) program at a large public Midwestern University was designed to provide 30 K-12 teachers (10 per year, primarily high school level) from high-needs, urban school districts with research experiences and shared activities designed to increase their understanding of the challenges and demands of nanotechnology, as well as college and career opportunities in science, technology, engineering, and mathematics (STEM) fields. In addition to these research experiences, our multi-disciplinary team sought to lead participants in the creation of 15 hands-on inquiry-based teaching modules (5 per year) that integrate multiple STEM disciplines, convey scientific-process skills, and align with Indiana Academic Standards and the Next Generation Science Standards. We frame this study as research evaluation, as our initial focus was on evaluating programmatic outcomes with the intention of improving the program itself through a cyclical process of research to practice. In this paper, our scope extends to the broader scholarly community: here we build on our evaluation results, with the aim of extending the body of knowledge pertaining to STEM professional development opportunities similar to this one