- Home
Broxton Bird
Permanent URI for this collection
Fluvial Erosion Hazard Research and Education in Indiana
Professor Broxton Bird's research addresses a range of environmental questions. He is particularly interested in the intersection between climate change and water resources and the impacts on natural and anthropogenic systems. His current projects are focused on developing new hydroclimate records from Tibet, tropical South America, and the midwestern US in order to reconstruct the spatiotemporal patterns and mechanisms of hydrologic variability.
Professor Bird is also the Director of the Center for Earth and Environmental Science (CEES). For over 11 years, CEES has studied how Indiana rivers move, not only now but in the past, to better understand how erosion hazard may change as the climate continues to change. CEES faculty and staff have participated in over a dozen regional workshops and seminars and gave more than two hundred presentations around Indiana, neighboring states, and at national conferences. CEES has also expanded to include Burke Engineering to deliver a more balanced agency, academic, and private consultant perspective on fluvial erosion hazards CEES has published several documents on how Indiana’s river’s function and how the rivers and streams can be managed to maximize stream health and public safety.
Professor Bird's translation of research into improved water quality for communities all around the world is another excellent example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Browsing Broxton Bird by Issue Date
Now showing 1 - 10 of 37
Results Per Page
Sort Options
Item A 2000 year varve-based climate record from the central Brooks Range, Alaska(Springer, 2009-01-01) Bird, Broxton W.; Abbott, Mark B.; Finney, Bruce P.; Kutchko, BarbaraVarved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4°C above the last millennial average (LMA = 4.2°C) from 730 to 850 AD, and 0.1°C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7°C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2°C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3°C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2°C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8°C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records from the eastern Canadian Arctic that document a cool LIA and twentieth century warming. However, the occurrence and timing of events, such as the LIA and Medieval Warm Period, varies considerably among records, suggesting heterogeneous climatic patterns across the North American Arctic.Item Geophysical evidence for Holocene lake-level change in southern California (Dry Lake)(Wiley, 2010) Bird, Broxton W.; Kirby, Matthew E.; Howat, Ian M.; Tulaczyk, Slawek; Earth Sciences, School of ScienceGround penetrating radar (GPR) data are used in combination with previously published sediment cores to develop a Holocene history of basin sedimentation in a small, alpine lake in southern California (Dry Lake). The GPR data identify three depositional sequences spanning the past 9000 calendar years before present (cal. yr BP). Sequence I represents the first phase of an early Holocene highstand. A regression between <8320 and >8120 cal. yr BP separates Sequence I from Sequence II, perhaps associated with the 8200 cal. yr BP cold event. Sequence II represents the second phase of the early-to-mid Holocene highstand. Sequence IIIa represents a permanent shift to predominantly low lake stands beginning ∼5550 cal. yr BP. This mid-Holocene shift was accompanied by a dramatic decrease in sedimentation rate as well as a contraction of the basin's area of sedimentation. By ∼1860 cal. yr BP (Sequence IIIb), the lake was restricted to the modern, central basin. Taken together, the GPR and core data indicate a wet early Holocene followed by a long-term Holocene drying trend. The similarity in ages of the early Holocene highstand across the greater southern California region suggests a common external forcing – perhaps modulation of early Holocene storm activity by insolation. However, regional lake level records are less congruous following the initial early Holocene highstand, which may indicate a change in the spatial domain of climate forcing(s) throughout the Holocene in western North America.Item The impact of over 100 years of wildfires on mercury levels and accumulation rates in two lakes in southern California, USA(Springer, 2010-05-01) Rothenberg, Sarah E.; Kirby, Matthew E.; Bird, Broxton W.; DeRose, Margie B.; Lin, Chu-Ching; Feng, Xinbin; Ambrose, Richard F.; Jay, Jennifer A.In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.Item A Holocene record of Pacific Decadal Oscillation (PDO)-related hydrologic variability in Southern California (Lake Elsinore, CA)(Springer, 2010-10-01) Kirby, M. E.; Lund, S. P.; Patterson, W. P.; Anderson, M. A.; Bird, Broxton W.; Ivanovici, L.; Monarrez, P.; Nielsen, S.High-resolution terrestrial records of Holocene climate from Southern California are scarce. Moreover, there are no records of Pacific Decadal Oscillation (PDO) variability, a major driver of decadal to multi-decadal climate variability for the region, older than 1,000 years. Recent research on Lake Elsinore, however, has shown that the lake’s sediments hold excellent potential for paleoenvironmental analysis and reconstruction. New 1-cm contiguous grain size data reveal a more complex Holocene climate history for Southern California than previously recognized at the site. A modern comparison between the twentieth century PDO index, lake level change, San Jacinto River discharge, and percent sand suggests that sand content is a reasonable, qualitative proxy for PDO-related, hydrologic variability at both multi-decadal-to-centennial as well as event (i.e. storm) timescales. A depositional model is proposed to explain the sand-hydrologic proxy. The sand-hydrologic proxy data reveal nine centennial-scale intervals of wet and dry climate throughout the Holocene. Percent total sand values >1.5 standard deviation above the 150–9,700 cal year BP average are frequent between 9,700 and 3,200 cal year BP (n = 41), but they are rare from 3,200 to 150 cal year BP (n = 6). This disparity is interpreted as a change in the frequency of exceptionally wet (high discharge) years and/or changes in large storm activity. A comparison to other regional hydrologic proxies (10 sites) shows more then occasional similarities across the region (i.e. 6 of 9 Elsinore wet intervals are present at >50% of the comparison sites). Only the early Holocene and the Little Ice Age intervals, however, are interpreted consistently across the region as uniformly wet (≥80% of the comparison sites). A comparison to two ENSO reconstructions indicates little, if any, correlation to the Elsinore data, suggesting that ENSO variability is not the predominant forcing of Holocene climate in Southern California.Item A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes(PNAS, 2011-05-24) Bird, Broxton W.; Abbott, Mark B.; Vuille, Mathias; Rodbell, Donald T.; Stansell, Nathan D.; Rosenmeier, Michael F.Item Forest–savanna–morichal dynamics in relation to fire and human occupation in the southern Gran Sabana (SE Venezuela) during the last millennia(Elsevier, 2011-11) Montoya, Encarni; Rull, Valentí; Stansell, Nathan D.; Abbott, Mark B.; Nogué, Sandra; Bird, Broxton W.; Díaz, Wilmer A.The southern Gran Sabana (SE Venezuela) holds a particular type of neotropical savanna characterized by the local occurrence of morichales (Mauritia palm swamps), in a climate apparently more suitable for rain forests. We present a paleoecological analysis of the last millennia of Lake Chonita (4°39′N–61°0′W, 884 m elevation), based on biological and physico-chemical proxies. Savannas dominated the region during the last millennia, but a significant vegetation replacement occurred in recent times. The site was covered by a treeless savanna with nearby rainforests from 3640 to 2180 cal yr BP. Water levels were higher than today until about 2800 cal yr BP. Forests retreated since about 2180 cal yr BP onwards, likely influenced by a higher fire incidence that facilitated a dramatic expansion of morichales. The simultaneous appearance of charcoal particles and Mauritia pollen around 2000 cal yr BP supports the potential pyrophilous nature of this palm and the importance of fire for its recent expansion. The whole picture suggests human settlements similar to today – in which fire is an essential element – since around 2000 yr ago. Therefore, present-day southern Gran Sabana landscapes seem to have been the result of the synergy between biogeographical, climatic and anthropogenic factors, mostly fire.Item A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia(European Geosciences Union, 2012-08-23) Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, Broxton W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.Item Ocean-atmosphere forcing of centennial hydroclimate variability in the Pacific Northwest(AGU, 2014-03-11) Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Ortiz, Joseph D.; Feng, Song; Pompeani, David P.; Stansell, Nathan D.; Anderson, Lesleigh; Finney, Bruce P.; Bird, Broxton W.; Earth Sciences, School of ScienceReconstructing centennial timescale hydroclimate variability during the late Holocene is critically important for understanding large-scale patterns of drought and their relationship with climate dynamics. We present sediment oxygen isotope records spanning the last two millennia from 10 lakes, as well as climate model simulations, indicating that the Little Ice Age was dry relative to the Medieval Climate Anomaly in much of the Pacific Northwest of North America. This pattern is consistent with observed associations between the El Niño–Southern Oscillation (ENSO), the Northern Annular Mode, and drought as well as with proxy-based reconstructions of Pacific and Atlantic ocean-atmosphere variations over the past 1000 years. The large amplitude of centennial variability indicated by the lake data suggests that regional hydroclimate is characterized by longer-term shifts in ENSO-like dynamics and that an improved understanding of the centennial timescale relationship between external forcing and drought is necessary for projecting future hydroclimatic conditions in western North America.Item Rivers of the Anthropocene Phase 1: A Comparative Study of the Tyne and Ohio River Valleys(Office of the Vice Chancellor for Research, 2014-04-11) Stump, Aaron M.; Bird, Broxton W.; Wilson, Jeremy J.The Rivers of the Anthropocene project is an international effort. Our part is an attempt to determine flood frequency and land use by American Indian tribes of the Mississippian Culture along the Ohio River. Methodologically, we will measure the physical and geochemical properties of lacustrine sediments recovered from Hovey Lake, a flood plane lake located on the Ohio River in southwestern Indiana. Sediment cores taken from Hovey Lake are being measured for bulk density and loss-on-ignition tests to determine organic composition by weight. Magnetic susceptibility is also being measured to determine variations in the delivery of terrestrial material (e.g. from flooding/land erosion) to the lake. Land use will be evaluated by measuring variations in the elemental abundance and isotopic composition of nitrogen and organic carbon, which has been used in the past to identify prehistoric land use. Here we present the initial results of our ongoing work, including sedimentological and chronological data. Ultimately, these data will help bring together historical records, geochemical records, and other contributions from scientists around the world in our attempt to better understand mankind’s impact on our environment.Item A 2540-year record of moisture variations derived from lacustrine sediment (Sasikul Lake) on the Pamir Plateau(Sage, 2014-05-06) Lei, Yanbin; Tian, Lide; Bird, Broxton W.; Hou, Juzhi; Ding, Lin; Oimahmadov, Ilhomjon; Gadoev, MustafoAlthough the Pamir Plateau is an ideal place to investigate paleo-environmental changes in the westerlies-dominated high Central Asia, there are only few Holocene records from this region. We present a sub-centennially resolved lacustrine record of moisture variations from Sasikul Lake, central Pamir Plateau, based on geochemical, sedimentological, and mineralogical proxies. Our results show that generally dry conditions at Sasikul Lake during the past 2540 years were interrupted by a pronounced wet period between ad 1550 and 1900, corresponding to the ‘Little Ice Age’ (LIA). More negative values of carbonate δ18O, lower total inorganic carbon (TIC), and sand content during LIA all indicate a relatively wet period with higher lake level. Higher TIC during the ‘Medieval Warm Period’ (MWP; ad 950–1200) reveals a lower lake level relative to the LIA. Low δ18O during this time is probably attributed to changes in the isotopic composition of input water and/or upstream moisture sources. The significant increase in detrital minerals and decrease in carbonate during the LIA provide further evidence for higher allochthonous input during the wet period at Sasikul Lake. The inferred moisture variations are consistent with existing records from regions of the northern Tibetan Plateau and Central Asia that are also influenced by the westerlies, but out-ofphase with those records from the Asian monsoon region, indicating that moisture variations at Sasikul Lake were mainly influenced by the strength and trajectories of the westerlies. The inferred water level at Sasikul Lake decreased significantly during the first half of the 20th century, and then increased in recent decades. This is consistent with the increase in lake area derived from satellite images and the monitoring data of large lake-level changes in Central Asia.