- Browse by Date
Department of Biomedical Engineering Works
Permanent URI for this collection
Browse
Browsing Department of Biomedical Engineering Works by Issue Date
Now showing 1 - 10 of 184
Results Per Page
Sort Options
Item Ultrastructural elastic deformation of cortical bone tissue probed by NIR Raman spectroscopy(2004-07) Finney, William F; Morris, Michael D.; Wallace, Joseph M.; Kohn, David H.Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components of murine cortical bone as it responds to loading in the elastic regime. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load tissue in a custom-made dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension and/or compression, the shifts in mineral P-O4v 1 and relative band heights in the Amide III band envelope are followed with the microprobe. Average load is measured using a load cell while the tissue is loaded under displacement control. Changes occur in both the mineral and matrix components of bone as a response to elastic deformation. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. The matrix is proposed to respond by deformation of the collagen backbone. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage.Item Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone.(Elsevier, 2007) Chen, Andy B.; Hamamura, Kazunori; Wang, Guohua; Xing, Weirong; Mohan, Subburaman; Yokota, Hiroki; Liu, Yunlong; Department of Biomedical Engineering, School of Engineering and TechnologyUnderstanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both “anabolic responses of mechanical loading” and “BMP-mediated osteogenic signaling”? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated receptor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells supported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation.Item Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific(2007-04) Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone's mechanical environment. Male mice have a greater response to non-weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 min/day; 12 m/min; 5° incline; 7 days/week) would similarly have a greater impact on cross-sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone- and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial–lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties.Item A rate-insensitive linear viscoelastic model for soft tissues(Elsevier, 2007-08) Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyIt is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate-insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: micro(0), tau, m, rho and beta, where micro(0) is the relaxed elastic modulus, tau the characteristic relaxation time, m the number of Maxwell elements, rho the gap between characteristic frequencies, and beta=micro(1)/micro(0) with micro(1) being the elastic modulus of the Maxwell body that has relaxation time tau. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters.Item Genomics in Space Life Sciences.(Elsevier, 2008) Clement, Jade Q.; Yokota, Hiroki; Department of Biomedical Engineering, School of Engineering and TechnologyItem A Brief Review of Bone Adaptation to Unloading.(Elsevier, 2008) Zhang, Ping; Hamamura, Kazunori; Yokota, Hiroki; Department of Biomedical Engineering, School of Engineering and TechnologyWeight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist.Item Exercise Alters Mineral and Matrix Composition in the Absence of Adding New Bone(2008-12) Kohn, David H.; Sahar, Nadder D.; Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.The mechanical properties of bone are dictated by its amount, distribution and ‘quality’. The composition of the mineral and matrix phases is integral to defining ‘bone quality’. Exercise can potentially increase resistance to fracture, yet the effects of exercise on skeletal fragility, and how alterations in fragility are modulated by the amount, distribution and composition of bone, are unknown. In this investigation, the effects of exercise on the size, composition, mechanical properties and damage resistance of bones from mice of various ages, background strains and genetic makeup were assessed, as a means of testing the hypothesis that mechanical loading can improve skeletal fragility via compositional alterations. C57BL/6 mice (4-month-old males) ran on a treadmill for 21 days. Tibiae from exercised and control mice were analyzed for cross-sectional geometry, mechanical properties, microdamage and composition. Exercise significantly increased strength without increasing cross-sectional properties, suggesting that mechanical stimulation led to changes in the bone matrix, and these changes led to the improvements in mechanical properties. Consistent with this interpretation, the mineral/matrix ratio was significantly increased in exercised bones. The number of fatigue-induced microcracks was significantly lower in exercised bones, providing evidence that exercise modulates fatigue resistance. The ratio of nonreducible/reducible cross-links mirrored the damage data. Similar trends (exercise induced increases in mechanical properties without increases in cross-sectional properties, but with compositional changes) were also observed in 2-month-old biglycan-deficient and wild-type mice bred on a C57BL/6x129 genetic background.Item Short-Term Exercise In Mice Increases Tibial Post-Yield Mechanical Properties While Two Weeks of Latency Following Exercise Increases Tissue-Level Strength(2009-04) Wallace, Joseph M.; Ron, Michael S; Kohn, David H.We have previously shown that exercise during growth increases post-yield deformation in C57BL6/129 (B6;129) male tibiae at the expense of reduced pre-yield deformation and structural and tissue strength. Other research in the literature indicates that increased mineral content, cross-sectional geometry and structural strength due to exercise can be maintained or increased after exercise ends for as long as 14 weeks. It was therefore hypothesized that after our exercise protocol ended, effects of exercise on mechanical properties would persist, resulting in increased post-yield behavior and rescued strength versus age-matched control mice. Beginning at 8 weeks of age, exercise consisted of running on a treadmill (30 min/day, 12 m/min, 5° incline) for 21 consecutive days. At the end of running and 2 weeks later, in the cortical bone of the tibial mid-diaphyses of B6;129 male mice, changes due to exercise and latency following exercise were assayed by mechanical tests and analyses of cross-sectional geometry. Exercise increased structural post-yield deformation compared with weight-matched control mice, without changes in bone size or shape, suggesting that exercised-induced changes in pre-existing bone quality were responsible. Over the 2-week latency period, no growth-related changes were noted in control mice, but exercise-induced changes resulted in increased tissue stiffness and strength versus mice sacrificed immediately after exercise ended. Our data indicate that periods of exercise followed by latency can alter strength, stiffness, and ductility of bone independent of changes in size or shape, suggesting that exercise may be a practical way to increase the quality of the bone extracellular matrix.Item The tissue diagnostic instrument(2009-05) Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph M.; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, JeffreyTissuemechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.Item Inbred Strain-Specific Response to Biglycan Deficiency in the Cortical Bone of C57BL6/129 and C3H/He Mice(2009-06) Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.Inbred strain-specific differences in mice exist in bone cross-sectional geometry, mechanical properties, and indices of bone formation. Inbred strain-specific responses to external stimuli also exist, but the role of background strain in response to genetic deletion is not fully understood. Biglycan (bgn) deficiency impacts bone through negative regulation of osteoblasts, resulting in extracellular matrix alterations and decreased mechanical properties. Because osteoblasts from C3H/He (C3H) mice are inherently more active versus osteoblasts from other inbred strains, and the bones of C3H mice are less responsive to other insults, it was hypothesized that C3H mice would be relatively more resistant to changes associated with bgn deficiency compared with C57BL6/129 (B6;129) mice. Changes in mRNA expression, tissue composition, mineral density, bone formation rate, cross-sectional geometry, and mechanical properties were studied at 8 and 11 wk of age in the tibias of male wildtype and bgn-deficient mice bred on B6;129 and C3H background strains. Bgn deficiency altered collagen cross-linking and gene expression and the amount and composition of mineral in vivo. In bgn's absence, changes in collagen were independent of mouse strain. Bgn-deficiency increased the amount of mineral in both strains, but changes in mineral composition, cross-sectional geometry, and mechanical properties were dependent on genetic background. Bgn deficiency influenced the amount and composition of bone in mice from both strains at 8 wk, but C3H mice were better able to maintain properties close to wildtype (WT) levels. By 11 wk, most properties from C3H knockout (KO) bones were equal to or greater than WT levels, whereas phenotypic differences persisted in B6;129 KO mice. This is the first study into mouse strain-specific changes in a small leucine-rich proteoglycan gene disruption model in properties across the bone hierarchy and is also one of the first to relate these changes to mechanical competence. This study supports the importance of genetic factors in determining the response to a gene deletion and defines biglycan's importance to collagen and mineral composition in vivo.