- Browse by Date Submitted
Department of Biomedical Engineering
Permanent URI for this community
Browse
Browsing Department of Biomedical Engineering by browse.metadata.dateaccessioned
Now showing 1 - 10 of 184
Results Per Page
Sort Options
Item In vivo reference point indentation reveals positive effects of raloxifene on mechanical properties following six months of treatment in skeletally mature beagle dogs.(Published article can be found at: http://www.sciencedirect.com/science/article/pii/S8756328213002718 doi: 10.1016/j.bone.2013.07.009, 2013) Aref, Mohammad; Gallant, Maxime A.; Organ, Jason M.; Wallace, Joseph M.; Newman, Christopher L.; Burr, David B.; Brown, Drew M.; Allen, Matthew R.Raloxifene treatment has been shown previously to positively affect bone mechanical properties following one year of treatment in skeletally mature dogs. Reference point indentation (RPI) can be used for in vivo assessment of mechanical properties and has been shown to produce values that are highly correlated with properties derived from traditional mechanical testing. The goal of this study was to use RPI to determine if raloxifene-induced alterations in mechanical properties occurred after 6 months of treatment. Twelve skeletally mature female beagle dogs were treated for 6 months with oral doses of saline vehicle (VEH, 1 ml/kg/day) or a clinically relevant dose of raloxifene (RAL, 0.5 mg/kg/day). At six months, all animals underwent in vivo RPI (10 N force, 10 cycles) of the anterior tibial midshaft. RPI data were analyzed using a custom MATLAB program, designed to provide cycle-by-cycle data from the RPI test and validated against the manufacturer-provided software. Indentation distance increase (IDI), a parameter that is inversely related to bone toughness, was significantly lower in RAL-treated animals compared to VEH (-16.5%) suggesting increased bone toughness. Energy absorption within the first cycle was significantly lower with RAL compared to VEH (-21%). These data build on previous work that has documented positive effects of raloxifene on material properties by showing that these changes exist after 6 months.Item Elevated Mechanical Loading When Young Provides Lifelong Benefits to Cortical Bone Properties in Female Rats Independent of a Surgically Induced Menopause(2013-09) Warden, Stuart J.; Galley, Matthew R.; Hurd, Andrea L.; Wallace, Joseph M.; Gallant, Maxime A.; Richard, Jeffrey S.; George, Lydia A.Exercise that mechanically loads the skeleton is advocated when young to enhance lifelong bone health. Whether the skeletal benefits of elevated loading when young persist into adulthood and after menopause are important questions. This study investigated the influence of a surgically induced menopause in female Sprague-Dawley rats on the lifelong maintenance of the cortical bone benefits of skeletal loading when young. Animals had their right forearm extrinsically loaded 3 d/wk between 4 and 10 weeks of age using the forearm axial compression loading model. Left forearms were internal controls and not loaded. Animals were subsequently detrained (restricted to cage activities) for 94 weeks (until age 2 years), with ovariectomy (OVX) or sham-OVX surgery being performed at 24 weeks of age. Loading enhanced midshaft ulna cortical bone mass, structure, and estimated strength. These benefits persisted lifelong and contributed to loaded ulnas having greater strength after detraining. Loading also had effects on cortical bone quality. The benefits of loading when young were not influenced by a surgically induced menopause because there were no interactions between loading and surgery. However, OVX had independent effects on cortical bone mass, structure, and estimated strength at early postsurgery time points (up to age 58 weeks) and bone quality measures. These data indicate skeletal loading when young had lifelong benefits on cortical bone properties that persisted independent of a surgically induced menopause. This suggests that skeletal loading associated with exercise when young may provide lifelong antifracture benefits by priming the skeleton to offset the cortical bone changes associated with aging and menopause.Item Microcomputed Tomography Applications in Bone and Mineral Research(2013-09) Bart, Zachary R.; Wallace, Joseph M.Microcomputed tomography (μCT) has evolved as a development of simple X-ray imaging into an indispensable technique used in both laboratory research and clinical diagnostics. Commercially available systems are capable of creating images at sub-micrometer resolutions to map out the complex web of trabecular bone in small animals, and offer an accurate measurement of bone mineral density for patients at risk of osteoporotic fractures. This review describes the development of μCT, its ability to analyze bone, and how it can be used alongside other clinical and laboratory techniques. μCT offers a non-destructive alternative for imaging mineralized tissues with no required preparation and can also be utilized with living specimen to track skeletal development.Item Ultrastructural elastic deformation of cortical bone tissue probed by NIR Raman spectroscopy(2004-07) Finney, William F; Morris, Michael D.; Wallace, Joseph M.; Kohn, David H.Raman spectroscopy is used as a probe of ultrastructural (molecular) changes in both the mineral and matrix (protein and glycoprotein, predominantly type I collagen) components of murine cortical bone as it responds to loading in the elastic regime. At the ultrastructural level, crystal structure and protein secondary structure distort as the tissue is loaded. These structural changes are followed as perturbations to tissue spectra. We load tissue in a custom-made dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. As the specimen is loaded in tension and/or compression, the shifts in mineral P-O4v 1 and relative band heights in the Amide III band envelope are followed with the microprobe. Average load is measured using a load cell while the tissue is loaded under displacement control. Changes occur in both the mineral and matrix components of bone as a response to elastic deformation. We propose that the mineral apatitic crystal lattice is deformed by movement of calcium and other ions. The matrix is proposed to respond by deformation of the collagen backbone. Raman microspectroscopy shows that bone mineral is not a passive contributor to tissue strength. The mineral active response to loading may function as a local energy storage and dissipation mechanism, thus helping to protect tissue from catastrophic damage.Item Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific(2007-04) Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone's mechanical environment. Male mice have a greater response to non-weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 min/day; 12 m/min; 5° incline; 7 days/week) would similarly have a greater impact on cross-sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone- and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial–lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties.Item The tissue diagnostic instrument(2009-05) Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph M.; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, JeffreyTissuemechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.Item Exercise Alters Mineral and Matrix Composition in the Absence of Adding New Bone(2008-12) Kohn, David H.; Sahar, Nadder D.; Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.The mechanical properties of bone are dictated by its amount, distribution and ‘quality’. The composition of the mineral and matrix phases is integral to defining ‘bone quality’. Exercise can potentially increase resistance to fracture, yet the effects of exercise on skeletal fragility, and how alterations in fragility are modulated by the amount, distribution and composition of bone, are unknown. In this investigation, the effects of exercise on the size, composition, mechanical properties and damage resistance of bones from mice of various ages, background strains and genetic makeup were assessed, as a means of testing the hypothesis that mechanical loading can improve skeletal fragility via compositional alterations. C57BL/6 mice (4-month-old males) ran on a treadmill for 21 days. Tibiae from exercised and control mice were analyzed for cross-sectional geometry, mechanical properties, microdamage and composition. Exercise significantly increased strength without increasing cross-sectional properties, suggesting that mechanical stimulation led to changes in the bone matrix, and these changes led to the improvements in mechanical properties. Consistent with this interpretation, the mineral/matrix ratio was significantly increased in exercised bones. The number of fatigue-induced microcracks was significantly lower in exercised bones, providing evidence that exercise modulates fatigue resistance. The ratio of nonreducible/reducible cross-links mirrored the damage data. Similar trends (exercise induced increases in mechanical properties without increases in cross-sectional properties, but with compositional changes) were also observed in 2-month-old biglycan-deficient and wild-type mice bred on a C57BL/6x129 genetic background.Item Inbred Strain-Specific Response to Biglycan Deficiency in the Cortical Bone of C57BL6/129 and C3H/He Mice(2009-06) Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.Inbred strain-specific differences in mice exist in bone cross-sectional geometry, mechanical properties, and indices of bone formation. Inbred strain-specific responses to external stimuli also exist, but the role of background strain in response to genetic deletion is not fully understood. Biglycan (bgn) deficiency impacts bone through negative regulation of osteoblasts, resulting in extracellular matrix alterations and decreased mechanical properties. Because osteoblasts from C3H/He (C3H) mice are inherently more active versus osteoblasts from other inbred strains, and the bones of C3H mice are less responsive to other insults, it was hypothesized that C3H mice would be relatively more resistant to changes associated with bgn deficiency compared with C57BL6/129 (B6;129) mice. Changes in mRNA expression, tissue composition, mineral density, bone formation rate, cross-sectional geometry, and mechanical properties were studied at 8 and 11 wk of age in the tibias of male wildtype and bgn-deficient mice bred on B6;129 and C3H background strains. Bgn deficiency altered collagen cross-linking and gene expression and the amount and composition of mineral in vivo. In bgn's absence, changes in collagen were independent of mouse strain. Bgn-deficiency increased the amount of mineral in both strains, but changes in mineral composition, cross-sectional geometry, and mechanical properties were dependent on genetic background. Bgn deficiency influenced the amount and composition of bone in mice from both strains at 8 wk, but C3H mice were better able to maintain properties close to wildtype (WT) levels. By 11 wk, most properties from C3H knockout (KO) bones were equal to or greater than WT levels, whereas phenotypic differences persisted in B6;129 KO mice. This is the first study into mouse strain-specific changes in a small leucine-rich proteoglycan gene disruption model in properties across the bone hierarchy and is also one of the first to relate these changes to mechanical competence. This study supports the importance of genetic factors in determining the response to a gene deletion and defines biglycan's importance to collagen and mineral composition in vivo.Item Distribution of Type I Collagen Morphologies in Bone: Relation to Estrogen Depletion(2010-05) Wallace, Joseph M.; Erickson, Blake; Les, Clifford M.; Orr, Bradford G.; Banaszak Holl, Mark M.Bone is an amazing material evolved by nature to elegantly balance structural and metabolic needs in the body. Bone health is an integral part of overall health, but our lack of understanding of the ultrastructure of healthy bone precludes us from knowing how disease may impact nanoscale properties in this biological material. Here, we show that quantitative assessments of a distribution of Type I collagen fibril morphologies can be made using atomic force microscopy (AFM). We demonstrate that normal bone contains a distribution of collagen fibril morphologies and that changes in this distribution can be directly related to disease state. Specifically, by monitoring changes in the collagen fibril distribution of sham-operated and estrogen-depleted sheep, we have shown the ability to detect estrogen-deficiency-induced changes in Type I collagen in bone. This discovery provides new insight into the ultrastructure of bone as a tissue and the role of material structure in bone disease. The observation offers the possibility of a much-needed in vitro procedure to complement the current methods used to diagnose osteoporosis and other bone disease.Item Inbred Strain-Specific Effects of Exercise in Wild Type and Biglycan Deficient Mice(2010-04) Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.; Kohn, David H.; Darling, Eric M.Biglycan (bgn)-deficient mice (KO) have defective osteoblasts which lead to changes in the amount and quality of bone. Altered tissue strength in C57BL6/129 (B6;129) KO mice, a property which is independent of tissue quantity, suggests that deficiencies in tissue quality are responsible. However, the response to bgn-deficiency is inbred strain-specific. Mechanical loading influences bone matrix quality in addition to any increase in bone mass or change in bone formation activity. Since many diseases influence the mechanical integrity of bone through altered tissue quality, loading may be a way to prevent and treat extracellular matrix deficiencies. C3H/He (C3H) mice consistently have a less vigorous response to mechanical loading vs. other inbred strains. It was therefore hypothesized that the bones from both wild type (WT) and KO B6;129 mice would be more responsive to exercise than the bones from C3H mice. To test these hypotheses at 11 weeks of age, following 21 consecutive days of exercise, we investigated cross-sectional geometry, mechanical properties, and tissue composition in the tibiae of male mice bred on B6;129 and C3H backgrounds. This study demonstrated inbred strain-specific compositional and mechanical changes following exercise in WT and KO mice, and showed evidence of genotype-specific changes in bone in response to loading in a gene disruption model. This study further shows that exercise can influence bone tissue composition and/or mechanical integrity without changes in bone geometry. Together, these data suggest that exercise may represent a possible means to alter tissue quality and mechanical deficiencies caused by many diseases of bone.