- Browse by Date Submitted
Mechanical & Energy Engineering Department Theses and Dissertations
Permanent URI for this collection
Information about the Purdue School of Engineering and Technology Graduate Degree Programs available at IUPUI can be found at: http://www.engr.iupui.edu/academics.shtml
Browse
Browsing Mechanical & Energy Engineering Department Theses and Dissertations by browse.metadata.dateaccessioned
Now showing 1 - 10 of 189
Results Per Page
Sort Options
Item Molecular Dynamics Simulations of the Mechanical Deformation Behavior of Face-Centered Cubic Metallic Nanowires(2010-05-05T14:41:16Z) Heidenreich, Joseph David; Wang, Guofeng; Chen, Jie; Jones, AlanNanoscale materials have become an active area of research due to the enhanced mechanical properties of the nanomaterials in comparison to their respective bulk materials. The effect that the size and shape of a nanomaterial has on its mechanical properties is important to understand if these materials are to be used in engineering applications. This thesis presents the results of molecular dynamics (MD) simulations on copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes and four diameters. The cross-sectional shapes investigated were square, circular, and octagonal while the diameters varied from one to eight nanometers. Due to a high surface area to volume ratio, nanowires do not have the same atomic spacing as bulk materials. To account for this difference, prior to tensile loading, a minimization procedure was applied to find the equilibrium strain for each structure size and shape. Through visualization of the atomic energy before and after minimization, it was found that there are more than two energetically distinct areas within the nanowires. In addition, a correlation between the anisotropy of a material and its equilibrium strain was found. The wires were then subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 with a simulation temperature of 300 K. The embedded-atom method (EAM) was employed using the Foiles potential to simulate the stretching of the wires. The wires were stretched to failure, and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The MD simulations were also visualized to investigate the deformation and yield behavior of each nanowire. Through the visualization, most nanowires were found to yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the 5 nm diameter octagonal platinum nanowire was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {021} surfaces.Item STUDY OF CATALYST LAYER FOR POLYMER ELECTROLYTE FUEL CELL(2010-07-27T18:58:35Z) Xu, Fan; Xie, Jian; Chen, Jie; Petrache, HoriaThere are three parts in this work centered on the catalyst layer of Polymer Electrolyte Fuel Cell (PEFC) in this thesis. The first part is for making best MEA structure. One of the major aims of this investigation is to understand the micro-structural organization of ionomer particles and Pt/C aggregates dispersed in a catalyst ink. The dispersion of Nafion® ionomer particles and Pt/C catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM technologies. A systematic approach was taken to study the dispersion of each component (i.e. ionomer particles and Pt/C aggregates) first, then the combination, last the catalyst ink. A multiple curve fitting was used to extract the particle size, size distribution and geometry from scattering data. The results suggests that the particle size, size distribution and geometry of each system are not uniform, rather, vary significantly. The results also indicate that interaction among components (i.e. ionomer particles and Pt/C aggregates) exists. The cryogenic TEM, by which the size and geometry of particles in a liquid can be directly observed, was used to validate the scattering results, which shows the excellent agreement. Based on this study, a methodology of analyzing dispersion of Pt/C particles, Nafion® particles in a catalyst ink has been developed and can serve as a powerful tool for making a desired catalyst ink which is a critical step for making rational designed MEA. The carbon corrosion process is the second part of the thesis. The carbon corrosion process of low–surface-area Pt/XC72 and high-surface-area Pt/BP2000 was investigated xi using an developed accelerated durability testing (ADT) method under simulated fuel cell conditions (a Rotating Disk Electrode (RDE) approach). Compared with the complex MEA system, this innovated approach using RDE can simply focus on carbon corrosion process and avoid the use of MEA in which many degradation/corrosion processes simultaneously occur. It was observed that different carbon corrosion processes resulted in different performance (electrochemical active surface area, mass activity and double layer capacity) decay of catalysts. The corrosion process was studied using TEM. It was found that in the case of Pt/XC72, major corrosion occurred at the center of the Pt/XC72 particle, with some minor corrosion on the surface of the carbon particle removing some amorphous carbon black filaments, while in the case of Pt/BP2000, the corrosion started on the surface. The understanding of carbon corrosion process provides the guidance for making high corrosion resistance catalysts to increase the durability performance of PEFC. Based on the second work, XC72 carbon blacks were etched using steam under different time and used as a new high corrosion resistance catalysts support for the oxygen reduction reaction. TEM results show that the center part of the XC72 particle was more easily etched away. XRD results show that the 002 and 10 peaks of the XC72 based samples are initially sharp, but then broaden during the corrosion process. TEM results of Pt particles show that the steam etching can improve dispersion uniformity of Pt nanoparticles on the surface of carbon support and reduce the Pt particles size. Electrochemical characterization results show that the mass activity of etched carbon black for 1 hour was 1.3 and 34 times greater than that of the carbon blacks etched for 3h and that of carbon blacks non-ecthed. ECSA of the carbon blacks was also significantly increased after etching. MEA test showed after 45 hours testing, the performance MEA with steam etching 1 hour XC72 based catalyst decreases much less than the MEA with commercial catalyst. Clearly, steam etching is a simple and efficient method to increase the performance and durability of the fuel cells catalysts.Item COMPUTATIONAL STUDY OF SURFACE-SEGREGATED PT ALLOY CATALYSTS FOR OXYGEN REDUCTION REACTION(2010-07-27T19:21:50Z) Xiao, Chan; Chen, Rongrong; EI-Mounayri, Hazim; Wang, GuofengIn this thesis two research objectives have been accomplished using computational simulation techniques. (1) The surface segregation phenomena in the surfaces of (111), unreconstructed (110) and reconstructed (1x2) missing row (110) surfaces of Pt-Ni and Pt-Co disordered alloys have been accurately predicted using Monte Carlo (MC) simulation method, and (2) the configuration and energy of the adsorption of O, O2, OH, and H2O molecules which are presented in oxygen reduction reaction (ORR) on the surface of pure Pt and surface-segregated Pt-binary alloys (i.e., Pt-Ni, Pt-Co and Pt-Fe) have been determined using density functional theory (DFT) calculations. This thesis yields some guiding principles for designing novel catalysts for proton exchange membrane fuel cells. The Pt concentration profiles of the surfaces of Pt-Ni and Pt-Co alloys were attained from the MC simulations in which the system energy was evaluated through the developed modified embedded atom method (MEAM) for Pt-Ni and Pt-Co alloys. It was found from our simulations that the Pt atoms strongly segregate to the outermost layer and the Ni atoms segregate to the second sub-layer in the (111) surface of both Pt-Ni and Pt-Co alloys. When Pt concentration is higher than 75 at.%, pure Pt top layer could be formed in the outermost layer (111) surface of both alloys. Moreover, segregation reversal phenomenon (Ni atoms segregating to the outermost layer while Pt atoms to the second sub-layer) was observed in our MC simulations of unreconstructed (110) surface of Pt-Ni alloys. In contrast, a Pt enriched outermost surface layer was found in a Pt-Ni reconstructed (1x2) missing row (110) surface. Our MC simulation results agree well with published experimental observations. In addition, adsorption of atomic and molecular oxygen, water and hydroxyl on the (111) and (100) surfaces of pure Pt and Pt-based alloys (Pt-Ni, Pt-Co and Pt-Fe) were studied using spin DFT method and assuming a coverage of 0.25 monolayer. Both the optimized configurations and the corresponding adsorption energies for each species were obtained in this study. In particular, we elucidated the influence of the adsorption energies of atomic oxygen and OH on the activity for ORR on Pt binary alloy catalysts in acidic environment. The calculated adsorption energies of atomic oxygen on the (111) surfaces of pure Pt, Pt-Ni, Pt-Co and Pt-Fe are -3.967 eV, -3.502 eV, -3.378 eV and -3.191 eV, respectively. The calculated adsorption energies of hydroxyl on the (111) surfaces of pure Pt, Pt-Ni, Pt-Co and Pt-Fe are -2.384 eV, -2.153 eV, -2.217 eV and -2.098 eV, respectively. The interaction between the adsorbed atomic and hydroxyl and the corresponding (111) surface becomes weaker for the surface-segregated alloys compared to pure Pt catalyst. The same results were obtained for the (100) surfaces.Item Sythesis of mesoporous phosphates via solid state reaction at low temperature(2010-08-25T16:20:56Z) Liu, Qi; Xie, Jian; Cheng, Ruihua; Zhu, LikunThree parts consist of my thesis work centered on the synthesis of inorganic phosphates and then metal organic frame work (MOF). The first part is the synthesis of mesoporous chromium phosphates using the room temperature solid state reaction (SSR)approach. One of the major aims of this work is to fill the gap of lacking a low cost, low or zero pollution, easy method to synthesize phosphates. The room temperature solid state reaction has been demonstrated in this work is such a method. Mesoporous chromium phosphates were prepared using the solid state reaction at low temperature using CrCl3.6H2O, and NaH2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized chromium phosphates were characterized by XRD, EDS, HR-TEM, N2-physisorption, TG-DSC and UV-Vis spectroscopies. The results indicate that chromium phosphate mesophases were formed only at atomic ratios of P/Cr ≥ 1.8. The mesophase for P/Cr = 2.0 phosphate possessed the highest ordering of pore array, with a specific surface area as high as 250.78 m2/g and an average pore size of 3.48nm. The catalytic performance of the chromium phosphates was examined by employing a model reaction, namely the dehydration of isopropanol to propene. The results indicated that all synthesized chromium phosphates exhibited significantly higher isopropanol conversions and propene yields than that synthesized via the conventional precipitation route. The highest propene selectivity (96.43%) at the highest isopropanol conversion (93.10%) has been obtained over the mesoporous chromium phosphate catalyst synthesized with a P/Cr atomic ratio of 2.0. The formation mechanism of the mesoporous chromium phosphate was investigated by FTIR technique.The results show that CTAB template plays a key role in the formation of mesoporous chromium phosphates. Mesoporous lithium manganese phosphates were also successfully synthesized using the same approach of solid state reaction (SSR) at low temperature by using LiC2O3.6H2O, MnCl2.6H2O and NH4H2PO4.2H2O as precursors and the surfactant cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized lithium manganese phosphates were characterized by XRD, EDS, SEM, HR-TEM, N2-physisorption. The results show that the synthesized meoporous lithium manganese phosphates exhibited a high specific surface area (256.63 m2/g) and a narrow pore size distribution. The electrochemical tests of Li-ion batteries were performed and the results show that the charge voltage could increase to be 3.60 V while the first time discharge capacity could be as high as 100 mAh/g. The Nitro-Cu-MOF complexes, a new class of metal organic frameworks, have been successfully synthesized using a conventional thermal reaction. The obtained Nitro-Cu-MOFs have a specific surface area of 576.27 m2/g and a pore volume of 0.32 m3/g.The gas uptake of the obtained Nitro-Cu-MOFs at 60 psi is 68 mg/g (sorbate/sorbent) at 298 K for carbon dioxide, which is much higher than that of the Cu-MOFs, 31 mg/g at 298 K for carbon dioxide.Item Nonlinear Constrained Component Optimization of a Plug-in Hybrid Electric Vehicle(2010-12) Yildiz, Emrah Tolga; Anwar, Sohel; Chen, Yaobin; Izadian, AfshinToday transportation is one of the rapidly evolving technologies in the world. With the stringent mandatory emission regulations and high fuel prices, researchers and manufacturers are ever increasingly pushed to the frontiers of research in pursuit of alternative propulsion systems. Electrically propelled vehicles are one of the most promising solutions among all the other alternatives, as far as; reliability, availability, feasibility and safety issues are concerned. However, the shortcomings of a fully electric vehicle in fulfilling all performance requirements make the electrification of the conventional engine powered vehicles in the form of a plug-in hybrid electric vehicle (PHEV) the most feasible propulsion systems. The optimal combination of the properly sized components such as internal combustion engine, electric motor, energy storage unit are crucial for the vehicle to meet the performance requirements, improve fuel efficiency, reduce emissions, and cost effectiveness. In this thesis an application of Particle Swarm Optimization (PSO) approach to optimally size the vehicle powertrain components (e.g. engine power, electric motor power, and battery energy capacity) while meeting all the critical performance requirements, such as acceleration, grade and maximum speed is studied. Compared to conventional optimization methods, PSO handles the nonlinear constrained optimization problems more efficiently and precisely. The PHEV powertrain configuration with the determined sizes of the components has been used in a new vehicle model in PSAT (Powertrain System Analysis Toolkit) platform. The simulation results show that with the optimized component sizes of the PHEV vehicle (via PSO), the performance and the fuel efficiency of the vehicle are significantly improved. The optimal solution of the component sizes found in this research increased the performance and the fuel efficiency of the vehicle. Furthermore, after reaching the desired values of the component sizes that meet all the performance requirements, the overall emission of hazardous pollutants from the PHEV powertrain is included in the optimization problem in order to obtain updated PHEV component sizes that would also meet additional design specifications and requirements.Item Experimental Investigation into Combustion Torch Jet Ignition of Methane-Air, Ethylene-Air, and Propane-Air Mixtures(2010-12) Perera, Ukwatte Lokuliyanage Indika Upendra; Nalim, M. Razi; Xie, Jian; Zhu, LikunIgnitability and the ignition delay time of a combustible mixture in a long combustion chamber, ignited by a hot combustion torch jet generated in a pre-chamber was investigated experimentally in relation to application as a viable igniter method for wave rotor combustors. Methane-air, ethylene-air, and propane-air in varying equivalence ratios were investigated as the combustible mixture in the combustion chamber. The effects of variation in the torch jet fuel, initial equivalence ratio in the pre-chamber, and nozzle geometry on the ignitability and the ignition delay time of combustible mixtures were observed and analyzed. The single-channel wave-rotor combustion rig at Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University, Indianapolis was used for this study. High-speed video imaging techniques to observe the ignition and flame propagation in the combustion chamber and fast-response pressure transducers to measure the dynamic pressure fluctuations in the combustion chambers were used in the current study. The present work explains how the experimental procedure and preliminary testing was carried out in order to conduct the necessary testing to find the ignitability and ignition delay time of a combustible mixture. Ignitability of methane, ethylene, and propane were much broader in range compared to conventional spark ignitable lean and rich limit equivalence ratios. The methane and propane ignition lean limits were similar to radical activated ignition lean limits found in previous studies of the same fuels. Ethylene exhibited the widest range in equivalence ratios from 0.4 to 2.4, while methane had the narrowest ranging from equivalence ratio 0.4 to 1.4. The ignition delay studies indicated both chemical kinetics and mixing between the combustion torch jet and the combustible mixture were critical. The mixing phenomena dominated chemical kinetics; unlike in ignition delay studies conducted using shock heated ignition techniques. Ethylene-air mixtures had the shortest ignition delay times ~1 ms for lean but near-stoichiometric mixtures. Methane and propane indicated similar ignition delay time characteristics with lean near-stoichiometric mixtures. The fuel-air equivalence ratio which was used to generate the combustion torch jet and the torch jet nozzle geometry had a direct influence over the ignition delay time in the main chamber combustible mixture. The slightly rich fuel-air ratios used to generate the combustion torch jet had the lowest delay times in igniting the main chamber fuel-air mixtures.Item A Multi-step Reaction Model for Stratified-Charge Combustion in Wave Rotors(2011) Elharis, Tarek M.; Nalim, M. Razi; Zhu, Likun; Wasfy, TamerTesting of a wave-rotor constant-volume combustor (WRCVC) showed the viability of the application of wave rotors as a pressure gain combustor. The aero-thermal design of the WRCVC rig had originally been performed with a time-dependent, one-dimensional model which applies a single-step reaction model for the combustion process of the air-fuel mixture. That numerical model was validated with experimental data with respect of matching the flame propagation speed and the pressure traces inside the passages of the WRCVC. However, the numerical model utilized a single progress variable representing the air-fuel mixture, which assumes that fuel and air are perfectly mixed with a uniform concentration; thus, limiting the validity of the model. In the present work, a two-step reaction model is implemented in the combustion model with four species variables: fuel, oxidant, intermediate and product. This combustion model is developed for a more detailed representation for the combustion process inside the wave rotor. A two-step reaction model presented a more realistic representation for the stratified air-fuel mixture charges in the WRCVC; additionally it shows more realistic modeling for the partial combustion process for rich fuel-air mixtures. The combustion model also accounts for flammability limits to exert flame extinction for non-flammable mixtures. The combustion model applies the eddy-breakup model where the reaction rate is influenced by the turbulence time scale. The experimental data currently available from the initial testing of the WRCVC rig is utilized to calibrate the model to determine the parameters, which are not directly measured and no directly related practice available in the literature. A prediction of the apparent ignition the location inside the passage is estimated by examination of measurements from the on-rotor instrumentations. The incorporation of circumferential leakage (passage-to-passage), and stand-off ignition models in the numerical model, contributed towards a better match between predictions and experimental data. The thesis also includes a comprehensive discussion of the governing equations used in the numerical model. The predictions from the two-step reaction model are validated using experimental data from the WRCVC for deflagrative combustion tests. The predictions matched the experimental data well. The predicted pressure traces are compared with the experimentally measured pressures in the passages. The flame propagation along the passage is also evaluated with ion probes data and the predicted reaction zone.Item MODELING THE INTERDEPENDENCE OF ELECTROCHEMICAL AND MECHANICAL PROPERTIES IN PER SULFONATE ACID PROTON EXCHANGE MEMBRANES(2011-05) Malladi, Jaya Sangita; Jones, Alan S.; Chen, Jie; Xie, JianProton exchange membrane fuel cells (PEMFC’s) offer an attractive alternative energy resource over traditional fossil fuels. The advantages such as high power density, relatively quick start-up, rapid response to varying loads and low operating temperatures make it a preferred technology option compared to other alternative energy sources. Nafion® by DuPont plays an integral role in the success of PEM fuel cells due to its high proton conductivity and high chemical and thermal stability. This research project aims to study the effect of mechanical and hygro-thermal stresses on the mechanical performance and proton conductivity of the membrane by subjecting it to realistic operating conditions such as those encountered in an automobile. In this thesis, the time-dependent behavior of the membrane has been modeled using a Prony series and the change in the conductivity due to mechanical loading was experimentally measured. The modeling of both electrochemical and mechanical properties can further be used in studying the degradation properties of the membrane and should guide the development of better membrane materials. Visco-elastic stress relaxation theory has been used in modeling the time-dependent behavior of the specimen. The EIS spectrum has been analyzed using a non-linear least squares method and an equivalent circuit method was also used to fit the spectra. This project was conducted in three phases. In the first phase a novel test facility was built to perform the experiments. A conductivity measurement test cell that measured the proton conductivity of a membrane was modeled and manufactured. The second phase included the design of different experiments that helped in modeling the interdependence of electrochemical and mechanical properties of the membrane. In this process, three series of experiments that tested the electrochemical and mechanical properties of the specimen were conducted. The membrane was held at constant strain and the through plane impedance was measured at different times during the test, specifically before and after stretching at ambient and varying environmental conditions. The membrane was also subjected to both mechanical and hygro-thermal loading conditions during the test. In the third phase, time-dependant mathematical model for the changes in the material properties were developed. The experimental apparatus thus tested the mechanical and electrochemical properties of the membrane simultaneously while the specimen was being subjected to constant mechanical and varying hygro-thermal conditions. Since the testing method is a novel procedure, the reliability and repeatability of the experimental facility has been verified before conducting the experiments. The experimental apparatus can further be used to test the membrane at varying strain rates and different hygro-thermal loading conditions in a consistent manner. The model developed can be used to analyze the degradation behavior of membrane and also to build better fabrication methods and membrane materials in future.Item Injector Waveform Monitoring of a Diesel Engine in Real-Time on a Hardware in the Loop Bench(2011-12) Farooqi, Quazi Mohammed Rushaed; Anwar, Sohel; Wasfy, Tamer; Lee, Jaehwan (John)This thesis presents the development, experimentation and validation of a reliable and robust system to monitor the injector pulse generated by an Engine Control Module (ECM) and send the corresponding fueling quantity to the real-time computer in a closed loop Hardware In the Loop (HIL) bench. The system can be easily calibrated for different engine platforms as well. The fueling quantity that is being injected by the injectors is a crucial variable to run closed loop HIL simulation to carry out the performance testing of engine, aftertreatment and other components of the vehicle. This research utilized Field Programmable Gate Arrays (FPGA) and Direct Memory Access (DMA) transfer capability offered by National Instruments (NI) Compact Reconfigurable Input-Output (cRIO) to achieve high speed data acquisition and delivery. The research was conducted in three stages. The first stage was to develop the HIL bench for the research. The second stage was to determine the performance of the system with different threshold methods and different sampling speeds necessary to satisfy the required accuracy of the fueling quantity being monitored. The third stage was to study the error and its variability involved in the injected fueling quantity from pulse to pulse, from injector to injector, between real injector stators and cheaper inductor load cells emulating the injectors, over different operating conditions with full factorial design of experimentation and mixed model Analysis Of Variance (ANOVA). Different thresholds were experimented to find out the best thresholds, the Start of Injection (SOI) threshold and the End of Injection (EOI) threshold that captured the injector “ontime” with best reliability and accuracy. Experimentation has been carried out at various data acquisition rates to find out the optimum speed of data sampling rate, trading off the accuracy of fueling quantity. The experimentation found out the expected error with a system with cheaper solution as well, so that, if a test application is not sensitive to error in fueling quantity, a cheaper solution with lower sampling rate and inductors as load cells can be used. The statistical analysis was carried out at highest available sampling rate on both injectors and inductors with the best threshold method found in previous studies. The result clearly shows the factors that affect the error and the variability in the standard deviations in error; it also shows the relation with the fixed and random factors. The real-time application developed for the HIL bench is capable of monitoring the injector waveform, using any fueling ontime table corresponding to the platform being tested, and delivering the fueling quantity in real-time. The test bench made for this research is also capable of studying injectors of different types with the automated test sequence, without occupying the resource of fully capable closed loop test benches for testing the ECM unctionality.Item LAYER BY LAYER NANOASSEMBLY OF COPPER INDIUM GALLIUM SELENIUM (CIGS) NANOPARTICLES FOR SOLAR CELL APPLICATION(2011-12) Hemati, Azadeh; El-Mounayri, Hazim; Agarwal, Mangilal; Varahramyan, KodyIn this research thesis, copper indium gallium selenium (CIGS) nanoparticles were synthesized from metal chlorides, functionalized to disperse in water, and further used in layer by layer (LbL) nanoassembly of CIGS films. CIGS nanoparticles were synthesized through the colloidal precipitation in an organic solvent. The peak and average sizes of the synthesized particles were measured to be 68 nm and 75 nm in chloroform, and 30 nm and 115 nm in water, respectively. Two methods were used to disperse the particle in water. In the first method the stabilizing agent oleylamine (OLA) was removed through multiple cleaning processes, and in the second method ligand exchange was performed with polystyrene sulfonate (PSS). Zeta potential of CIGS nanoparticles dispersed in water was measured to be +61 mV. The surface charge of the nanoparticles was reversed by raising the pH of the solution, which was measured to be −43.3 mV at 10.5 pH. In a separate process, the CIGS nanoparticles dispersed in water were coated with PSS. The resulting dispersion was observed to be stable and the surface charge was measured to be −56.9 mV. The LbL deposition process of CIGS nanoparticles was characterized by depositing thin films on quartz crystal microbalance (QCM). LbL depositions was conducted using (i) oppositely charged CIGS nanoparticles, (ii) positively charged CIGS nanoparticles and PSS, and (iii) PSS-coated CIGS (CIGS-PSS) and polyethyleneimine (PEI). The average thickness of each bi-layer of the above mentioned depositions were measured to be 2.2 nm, 1.37 nm, and 10.12 nm, respectively. The results from the QCM have been observed to be consistent with the film thickness results obtained from atomic force microscopy (AFM). Various immersion times versus thickness of the film were also studied. For electrical characterization, the CIGS films were deposited on indium tindioxide (ITO)-coated glass substrates. Current versus voltage (I/V) measurements were carried out for each of the films using the Keithley semiconductor characterization instruments and micromanipulator probing station. It was observed that the conductivity of the films was increased with the deposition of each additional layer. The I/V characteristics were also measured under the light illumination and after annealing to study the photovoltaic and annealing effects. It was observed that under light illumination, the resistivity of a 12-layer CIGS film decreased by 93% to 0.54 MΩ.m, and that of the same number of layers of PSS-coated CIGS and PEI film decreased by 60% to 0.97 MΩ.m under illumination. The resistivity of an 8-layer CIGS and PSS film decreased by 76.4% to 0.1 MΩ.m, and that of the same layers of PSS-coated CIGS and PEI decreased by 87% to 0.07 MΩ.m after annealing. The functionalized nanoparticles and the LbL CIGS films were implemented in the solar cell devices. Several configurations of CIGS films (p-type), and ZnO and CdS films (n-type) were considered. Poly(3,4-ethylenedioxythiophene) (PEDOT), molybdenum (Mo), and ITO were used as back contacts and ITO was used as front contact for all the devices. The devices were characterized the Keithley semiconductor characterization instruments and micromanipulator probing station. For a CIGS and n-ZnO films device with PEDOT as back contact and ITO as front contact, the current density at 0 V and under light illumination was measured to be 60 nA/cm2 and the power density was measured to be 0.018 nW/cm2. For a CIGS and CdS films device with ITO as both back and front contact, the current density at 0 V and under light illumination was measured to be 50 nA/cm2 and the power density was measured to be 0.01 nW/cm2. For a drop-casted CIGS and CdS films device with Mo as back contact and ITO as front contact, the current density of 50 nA/cm2 at 0 V and power density of 0.5 nW/cm2 under light illumination was measured. For the LbL CIGS and chemical bath deposited CdS films device with ITO as both back and front contact, the current density of 0.04 mA/cm2 at 0 V and power density of 1.6 μW/cm2 under light illumination was measured. Comparing to Device-III, an increase by 99% in the power density was observed by using the CIGS LbL film in the device structure. The novel aspects of this research include, (i) functionalization of the CIGS nanoparticles to disperse in water including coating with PSS, (ii) electrostatic LbL deposition of CIGS films using oppositely charged nanoparticles and polymers, and (iii) the utilization of the fabricated LbL CIGS films to develop solar cells. In addition, the n-type cadmium sulfide film (CdS) and zinc oxide (ZnO) buffer layer were also deposited through LbL process after the respective particles were functionalized with PSS coating in separate experiments.