- Browse by Date Submitted
Gabriel M. Filippelli
Permanent URI for this collection
Building Environmental Optimism from the Ground Up
Gabriel Filippelli, Ph.D., is interested in engaging communities to help them identify and overcome environmental challenges that face them. This includes his citizen-science work on lead exposure as well as his public speaking and writing activities revolving around the climate crisis.
Dr. Filippelli is working to alleviate lead poisoning, a tragic and avoidable harm that often brings cognitive challenges. Lead is present in soils, dust, paint, and water pipes, but we collectively have done a terrible job of identifying lead hotspots in communities and dealing with them. This is where Dr. Filippelli's community science approach comes in—by providing some guidance, participants collect environmental samples which are analyzed for free to identity lead and other heavy metals. If values are normal, then they can carry on with their lives, but when elevated values are found, Dr. Filippelli and his research team provide guidance on low-cost mitigation strategies that participants can use to reduce their risk of exposure.
Dr. Filippelli also highlights the unjust impacts of climate change and climate-fueled disasters, and places climate change in the geologic context so that people can better understand the forces at play, and can be assured that their individual and collective actions can bend the climate needle to reduce current and future harm. Dr. Filippelli tries to amplify this message by being a frequent media contributor and speaker, and has authored and edited several books on the topic. Dr. Filippelli's work to improve the health of communities and the climate is another excellent example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.
Browse
Browsing Gabriel M. Filippelli by browse.metadata.dateaccessioned
Now showing 1 - 10 of 60
Results Per Page
Sort Options
Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2014-04-11) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah E.; Watson, Dennis P.Urban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, conducting workshops on cutting-edge developments in urban health, and bridging campus and community efforts in public health, including the Reconnecting to Our Waterways (RWO) initiative.Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2013-04-05) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah E.; Zollinger, TerrellUrban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, providing seed funds for new research areas, funding graduate fellowships, and sponsoring educational activities such as public lectures and a Visiting Scholars Program.Item Center for Urban Health: Enhancing the health of cities by focusing on communities and the environment(Office of the Vice Chancellor for Research, 2012-04-13) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah; Zollinger, TerryUrban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. Several groups at IUPUI and in the community are collaborating to explore connections between environment, behavior, health, and climate as related to urban environments. These translational efforts are inter- and trans-disciplinary, as evidenced by earth scientists publishing with pediatricians, and geographers publishing with epidemiologists. These efforts are largely undertaken with a geospatial and geotemporal research template. This template allows environmental, health, and behavioral data to be collected individually but with reference to space and time, which become important metadata components for analysis. The Center for Urban Health promotes discovery by building research collaborations among Center Investigators, providing seed funds for new research areas, funding graduate fellowships, and sponsoring educational activities such as public lectures and a Visiting Scholars Program.Item The IUPUI Center for Urban Health Enhancing Community Wellness Through Research(Office of the Vice Chancellor for Research, 2011-04-08) Filippelli, Gabriel; Johnson, Daniel P.; Wiehe, Sarah; Zollinger, TerryUrban sustainability is a new philosophy of developing healthy, productive communities that (1) promote and use locally-produced foods and products, (2) ensure safe access to natural spaces, and (3) establish low-carbon transportation systems. Urban living is arguably the most sustainable form of community given the concentration of resources, protection of arable land, and vertical structure of housing. In fact, urbanization is becoming the global norm; the percentage of global population living in urban settings has increased from less than 30% in 1950 to 47% in 2000; the percentage of urban dwellers is expected to increase to 60% by 2025. The promise of a healthy and sustainable urban future is clouded, however, by the reality of environmental insults, economic disparities, and behavioral pressures that exist in modern cities. The challenge is not how to build a shiny carbon-neutral city from scratch, but rather how to transition our current urban state toward one that is healthier, has less environmental impact, and is more prepared to respond and adjust to variety of environmental, social, and health changes in the future. The central theme of the IUPUI Center for Urban Health is Environment, Community, and Health. Each of these “spheres” is connected by the built and social environment from a contextual standpoint and by geospatial referencing from an integration standpoint. The goal of the Center for Urban Health is to enhance health and sustainability for urban populations, with an eye toward both environmental legacies (i.e., reduced contamination, removing social and economic disparities) and emerging threats (i.e., climate change, water quality and quantity). The Center is currently recruiting Investigators across campus and across the community to provide research linkages, is funding several Urban Health Graduate Fellows, is developing a Seed Funding program for investigators through a Protocol Development Team, and is funding a Visiting Scholars program to enhance research at IUPUI.Item Children's Blood Lead Seasonality in Flint, Michigan (USA), and Soil-Sourced Lead Hazard Risks(MDPI, 2016-03-25) Laidlaw, Mark A.S.; Filippelli, Gabriel M.; Sadler, Richard C.; Gonzales, Christopher R.; Ball, Andrew S.; Mielke, Howard W.; Department of Earth Sciences, School of ScienceIn Flint; MI; USA; a public health crisis resulted from the switching of the water supply from Lake Huron to a more corrosive source from the Flint River in April 2014; which caused lead to leach from water lines. Between 2010 and 2015; Flint area children's average blood lead patterns display consistent peaks in the third quarter of the year. The third quarter blood lead peaks displayed a declining trend between 2010 and 2013; then rose abruptly between the third quarters of 2013 from 3.6% blood lead levels ≥5 µg/dL to a peak of about 7% in the third quarter of 2014; an increase of approximately 50%. The percentage of blood lead level ≥5 µg/dL in the first quarter of 2015 then dropped to 2.3%; which was the same percentage as the first quarter of 2014 (prior to the Flint River water source change). The Flint quarterly blood lead level peak then rose to about 6% blood lead levels ≥ 5 µg/dL in the third quarter of 2015; and then declined to about 2.5% in the fourth quarter of 2015. Soil lead data collected by Edible Flint food collaborative reveal generally higher soil lead values in the metropolitan center for Flint; with lower values in the outskirts of the city. The questions that are not being asked is why did children's blood lead levels display a seasonal blood lead pattern before the introduction of the new water supply in Flint; and what are the implications of these seasonal blood lead patterns? Based upon previous findings in Detroit and other North American cities we infer that resuspension to the air of lead in the form of dust from lead contaminated soils in Flint appears to be a persistent contribution to lead exposure of Flint children even before the change in the water supply from Lake Huron to the Flint River.Item Lead exposure at firing ranges-a review(Springer (Biomed Central Ltd.), 2017-04-04) Laidlaw, Mark A. S.; Filippelli, Gabriel; Mielke, Howard; Gulson, Brian; Ball, Andrew S.; Earth Science, School of ScienceBACKGROUND: Lead (Pb) is a toxic substance with well-known, multiple, long-term, adverse health outcomes. Shooting guns at firing ranges is an occupational necessity for security personnel, police officers, members of the military, and increasingly a recreational activity by the public. In the United States alone, an estimated 16,000-18,000 firing ranges exist. Discharge of Pb dust and gases is a consequence of shooting guns. METHODS: The objectives of this study are to review the literature on blood lead levels (BLLs) and potential adverse health effects associated with the shooting population. The search terms "blood lead", "lead poisoning", "lead exposure", "marksmen", "firearms", "shooting", "guns", "rifles" and "firing ranges" were used in the search engines Google Scholar, PubMed and Science Direct to identify studies that described BLLs in association with firearm use and health effects associated with shooting activities. RESULTS: Thirty-six articles were reviewed that included BLLs from shooters at firing ranges. In 31 studies BLLs > 10 μg/dL were reported in some shooters, 18 studies reported BLLs > 20 μg/dL, 17 studies > 30 μg/d, and 15 studies BLLs > 40 μg/dL. The literature indicates that BLLs in shooters are associated with Pb aerosol discharge from guns and air Pb at firing ranges, number of bullets discharged, and the caliber of weapon fired. CONCLUSIONS: Shooting at firing ranges results in the discharge of Pb dust, elevated BLLs, and exposures that are associated with a variety of adverse health outcomes. Women and children are among recreational shooters at special risk and they do not receive the same health protections as occupational users of firing ranges. Nearly all BLL measurements compiled in the reviewed studies exceed the current reference level of 5 μg/dL recommended by the U.S. Centers for Disease Control and Prevention/National Institute of Occupational Safety and Health (CDC/NIOSH). Thus firing ranges, regardless of type and user classification, currently constitute a significant and unmanaged public health problem. Prevention includes clothing changed after shooting, behavioural modifications such as banning of smoking and eating at firing ranges, improved ventilation systems and oversight of indoor ranges, and development of airflow systems at outdoor ranges. Eliminating lead dust risk at firing ranges requires primary prevention and using lead-free primers and lead-free bullets.Item Case studies and evidence-based approaches to addressing urban soil lead contamination(Elsevier, 2017-08) Laidlaw, Mark A. S.; Filippelli, Gabriel M.; Brown, Sally; Paz-Ferreiro, Jorge; Reichman, Suzie M.; Netherway, Pacian; Truskewycz, Adam; Ball, Andrew S.; Mielke, Howard W.; Earth Science, School of ScienceUrban soils in many communities in the United States and internationally have been contaminated by lead (Pb) from past use of lead additives in gasoline, deterioration of exterior paint, emissions from Pb smelters and battery recycling and other industries. Exposure to Pb in soil and related dust is widespread in many inner city areas. Up to 20–40% of urban children in some neighborhoods have blood lead levels (BLLs) equal to or above 5 μg per decilitre, the reference level of health concern by the U.S. Centers for Disease Control. Given the widespread nature of Pb contamination in urban soils it has proven a challenge to reduce exposure. In order to prevent this exposure, an evidence-based approach is required to isolate or remediate the soils and prevent children and adult's ongoing exposure. To date, the majority of community soil Pb remediation efforts have been focused in mining towns or in discrete neighborhoods where Pb smelters have impacted communities. These efforts have usually entailed very expensive dig and dump soil Pb remediation techniques, funded by the point source polluters. Remediating widespread non-point source urban soil contamination using this approach is neither economical nor feasible from a practical standpoint. Despite the need to remediate/isolate urban soils in inner city areas, no deliberate, large scale, cost effective Pb remediation schemes have been implemented to isolate inner city soils impacted from sources other than mines and smelters. However, a city-wide natural experiment of flooding in New Orleans by Hurricane Katrina demonstrated that declines in soil Pb resulted in major BLL reductions. Also a growing body of literature of smaller scale pilot studies and programs does exist regarding low cost efforts to isolate Pb contaminated urban soils. This paper reviews the literature regarding the effectiveness of soil Pb remediation for reducing Pb exposure and BLL in children, and suggests best practices for addressing the epidemics of low-level Pb poisoning occurring in many inner city areas.Item Climate-driven changes in sedimentation rate influence phosphorus burial along continental margins of the northwestern Mediterranean(Elsevier, 2018) Cortina, Aleix; Filippelli, Gabriel; Ochoa, Diana; Sierro, Francisco Javier; Flores, José-Abel; Grimalt, Joan O.; Earth Sciences, School of ScienceThe burial of phosphorus (P) in continental margin sediments is a critical component of the marine reactive P budget, and thus an important factor in marine biological productivity. We determined downcore records of P from a site drilled on the upper slope of the Gulf of Lions (PRGL 1), northwestern Mediterranean Sea. Changes in total P content were monitored from Marine Isotope Stage (MIS) 6 to MIS 11. In addition, in two selected intervals (248–277 ka and 306–342 ka) the total P record was expanded by adding detailed geochemical analyses of the various P fractions, including oxyhydroxide-associated P, authigenic P, detrital P and organic P. Increased sedimentation rates during glacials owing to seaward migration of the Rhone's mouth, enhanced the burial of reactive P (oxyhydroxide-associated + authigenic + organic) phases by decreasing its time at the reactive sediment/water interface, in turn resulting in increasing proportion of authigenic to detrital phosphorus. The inverse was found for interglacial stages. The effects of glacial/interglacial variation in sedimentation rate over P geochemistry resulted in changes in sediment-water interface oxygenation, as well as in the efficiency of P burial, as shown by (C:P)org and Corg:Preact proxies respectively. Two events of high P deposition associated with authigenic P formation, at 335 ka (Paut1) and 275 ka (Paut2), were associated with periods of rapid disintegration of North Atlantic ice sheets leading to Ice Rafted Debris (IRD) deposition. These high P deposition events appear to be linked to short warm periods that followed cold episodes. Enhanced continental runoff owing to more humid conditions during short warm episodes could play a critical role for enhanced biogenic productivity and posterior authigenic P accumulation.Item Balancing the Global Distribution of Phosphorus With a View Toward Sustainability and Equity(AGU, 2018) Filippelli, Gabriel M.; Earth Sciences, School of ScienceLimitations in the geological reserves of phosphate rock, the source of fertilizer phosphorus, are not currently considered in agricultural practices or global trade, a very short‐sighted approach considering that there is no “alternative fuel” for plant growth. Thus, it is important to understand the science of phosphorus‐crop growth dynamics as a function of grain type, plant uptake, climate, and past fertilizer phosphorus application history. Recent work on modeling these factors on the global scale (Kvakić et al., 2018) provides the first scientific backdrop for developing an understanding of fertilizer phosphorus balances, and for informing forward‐looking practices and policies that regulate toward long‐term sustainability rather than short‐term profit.Item Mapping the Urban Lead Exposome: A Detailed Analysis of Soil Metal Concentrations at the Household Scale Using Citizen Science(MDPI, 2018-07-19) Filippelli, Gabriel M.; Adamic, Jessica; Nichols, Deborah; Shukle, John; Frix, Emeline; Earth Sciences, School of ScienceAn ambitious citizen science effort in the city of Indianapolis (IN, USA) led to the collection and analysis of a large number of samples at the property scale, facilitating the analysis of differences in soil metal concentrations as a function of property location (i.e., dripline, yard, and street) and location within the city. This effort indicated that dripline soils had substantially higher values of lead and zinc than other soil locations on a given property, and this pattern was heightened in properties nearer the urban core. Soil lead values typically exceeded the levels deemed safe for children’s play areas in the United States (<400 ppm), and almost always exceeded safe gardening guidelines (<200 ppm). As a whole, this study identified locations within properties and cities that exhibited the highest exposure risk to children, and also exhibited the power of citizen science to produce data at a spatial scale (i.e., within a property boundary), which is usually impossible to feasibly collect in a typical research study.