- Browse by Date Submitted
Department of Ophthalmology
Permanent URI for this community
Browse
Browsing Department of Ophthalmology by browse.metadata.dateaccessioned
Now showing 1 - 10 of 276
Results Per Page
Sort Options
Item The TAg-RB Murine Retinoblastoma Cell of Origin Has Immunohistochemical Features of Differentiated Müller Glia with Progenitor Properties(2011-09) Pajovic, Sanja; Corson, Timothy W.; Spencer, Clarellen; Dimaras, Helen; Orlic-Milacic, Marija; Marchong, Mellone N; To, Kwong-Him; Thériault, Brigitte; Auspitz, Mark; Gallie, Brenda LPURPOSE: Human retinoblastoma arises from an undefined developing retinal cell after inactivation of RB1. This is emulated in a murine retinoblastoma model by inactivation of pRB by retinal-specific expression of simian virus 40 large T-antigen (TAg-RB). Some mutational events after RB1 loss in humans are recapitulated at the expression level in TAg-RB, supporting preclinical evidence that this model is useful for comparative studies between mouse and human. Here, the characteristics of the TAg-RB cell of origin are defined. METHODS: TAg-RB mice were killed at ages from embryonic day (E)18 to postnatal day (P)35. Tumors were analyzed by immunostaining, DNA copy number PCR, or real-time quantitative RT-PCR for TAg protein, retinal cell type markers, and retinoblastoma-relevant genes. RESULTS: TAg expression began at P8 in a row of inner nuclear layer cells that increased in number through P21 to P28, when clusters reminiscent of small tumors emerged from cells that escaped a wave of apoptosis. Early TAg-expressing cells coexpressed the developmental marker Chx10 and glial markers CRALBP, clusterin, and carbonic anhydrase II (Car2), but not TuJ1, an early neuronal marker. Emerging tumors retained expression of only Chx10 and carbonic anhydrase II. As with human retinoblastoma, TAg-RB tumors showed decreased Cdh11 DNA copy number and gain of Kif14 and Mycn. It was confirmed that TAg-RB tumors lose expression of tumor suppressor cadherin-11 and overexpress oncogenes Kif14, Dek, and E2f3. CONCLUSIONS: TAg-RB tumors displayed molecular similarity to human retinoblastoma and origin in a cell with features of differentiated Müller glia with progenitor properties.Item Design and applications of bifunctional small molecules: Why two heads are better than one(2008-11-21) Corson, Timothy W.; Aberle, Nicholas; Crews, Craig MInduction of protein−protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based “chemical inducers of dimerization”, but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACs), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This Review discusses these and other advances in the design and use of bifunctional small molecules and potential strategies for future systems.Item Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials(2008-08-12) Corson, Timothy W.; Crews, Craig MTraditional medicines provide fertile ground for modern drug development, but first they must pass along a pathway of discovery, isolation, and mechanistic studies before eventual deployment in the clinic. Here, we highlight the challenges along this route, focusing on the compounds artemisinin, triptolide, celastrol, capsaicin, and curcumin.Item Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins(2012-02) Neklesa, Taavi K; Tae, Hyun Seop; Schneekloth, Ashley R; Stulberg, Michael J; Corson, Timothy W.; Sundberg, Thomas B; Raina, Kanak; Holley, Scott A; Crews, Craig MThe ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1G12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.Item Triptolide Directly Inhibits dCTP Pyrophosphatase(2011-07) Corson, Timothy W.; Cavga, Hüseyin; Aberle, Nicholas; Crews, Craig MTriptolide is a potent natural product, with documented antiproliferative, immunosuppressive, anti-inflammatory, antifertility, and antipolycystic kidney disease effects. Despite a wealth of knowledge about the biology of this compound, direct intracellular target proteins have remained elusive. We synthesized a biotinylated photoaffinity derivative of triptolide, and used it to identify dCTP pyrophosphatase 1 (DCTPP1) as a triptolide-interacting protein. Free triptolide interacts directly with recombinant DCTPP1, and inhibits the enzymatic activity of this protein. Triptolide is thus the first dCTP pyrophosphatase inhibitor identified, and DCTPP1 is a biophysically validated target of triptolide.Item Multimodality Imaging Methods for Assessing Retinoblastoma Orthotopic Xenograft Growth and Development(2014-06) Corson, Timothy W.; Samuels, Brian C; Wenzel, Andrea A; Geary, Anna J; Riley, Amanda A; McCarthy, Brian P; Hanenberg, Helmut; Bailey, Barbara J; Rogers, Pamela I; Pollok, Karen E; Rajashekhar, Gangaraju; Territo, Paul RGenomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux ( F) through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial development of xenografts in the living eye. We engineered Y79 retinoblastoma cells to express a lentivirally-delivered enhanced green fluorescent protein-luciferase fusion protein. In intravitreal xenografts, we assayed bioluminescence and computed F, as well as documented tumor growth by intraocular optical coherence tomography (OCT), brightfield, and fluorescence imaging. In vivo bioluminescence, ex vivo tumor size, and ex vivo fluorescent signal were all highly correlated in orthotopic xenografts. By OCT, xenografts were dense and highly vascularized, with well-defined edges. Small tumors preferentially sat atop the optic nerve head; this morphology was confirmed on histological examination. In vivo, F in xenografts showed a plateau effect as tumors became bounded by the dimensions of the eye. The combination of F modeling and in vivo intraocular imaging allows both quantitative and high-resolution, non-invasive spatial analysis of this retinoblastoma model. This technique will be applied to other cell lines and experimental therapeutic trials in the future.Item Synthesis and Mechanistic Studies of a Novel Homoisoflavanone Inhibitor of Endothelial Cell Growth(2014-04) Basavarajappa, Halesha D; Lee, Bit; Fei, Xiang; Lim, Daesung; Callaghan, Breedge; Mund, Julie A; Case, Jamie; Rajashekhar, Gangaraju; Seo, Seung-Yong; Corson, Timothy W.Preventing pathological ocular angiogenesis is key to treating retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. At present there is no small molecule drug on the market to target this process and hence there is a pressing need for developing novel small molecules that can replace or complement the present surgical and biologic therapies for these neovascular eye diseases. Previously, an antiangiogenic homoisoflavanone was isolated from the bulb of a medicinal orchid, Cremastra appendiculata. In this study, we present the synthesis of a novel homoisoflavanone isomer of this compound. Our compound, SH-11052, has antiproliferative activity against human umbilical vein endothelial cells, and also against more ocular disease-relevant human retinal microvascular endothelial cells (HRECs). Tube formation and cell cycle progression of HRECs were inhibited by SH-11052, but the compound did not induce apoptosis at effective concentrations. SH-11052 also decreased TNF-α induced p38 MAPK phosphorylation in these cells. Intriguingly, SH-11052 blocked TNF-α induced IκB-α degradation, and therefore decreased NF-κB nuclear translocation. It decreased the expression of NF-κB target genes and the pro-angiogenic or pro-inflammatory markers VCAM-1, CCL2, IL8, and PTGS2. In addition SH-11052 inhibited VEGF induced activation of Akt but not VEGF receptor autophosphorylation. Based on these results we propose that SH-11052 inhibits inflammation induced angiogenesis by blocking both TNF-α and VEGF mediated pathways, two major pathways involved in pathological angiogenesis. Synthesis of this novel homoisoflavanone opens the door to structure-activity relationship studies of this class of compound and further evaluation of its mechanism and potential to complement existing antiangiogenic drugs.Item Synthesis and Biological Evaluation of Novel Homoisoflavonoids for Retinal Neovascularization(ACS, 2015-06) Basavarajappa, Halesha D.; Lee, Bit; Lee, Hyungjun; Sulaiman, Rania S.; An, Hongchan; Magaña, Carlos; Shadmand, Mehdi; Vayl, Alexandra; Rajashekhar, Gangaraju; Kim, Eun-Yeong; Suh, Young-Ger; Lee, Kiho; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineEye diseases characterized by excessive angiogenesis such as wet age-related macular degeneration, proliferative diabetic retinopathy, and retinopathy of prematurity are major causes of blindness. Cremastranone is an antiangiogenic, naturally occurring homoisoflavanone with efficacy in retinal and choroidal neovascularization models and antiproliferative selectivity for endothelial cells over other cell types. We undertook a cell-based structure–activity relationship study to develop more potent cremastranone analogues, with improved antiproliferative selectivity for retinal endothelial cells. Phenylalanyl-incorporated homoisoflavonoids showed improved activity and remarkable selectivity for retinal microvascular endothelial cells. A lead compound inhibited angiogenesis in vitro without inducing apoptosis and had efficacy in the oxygen-induced retinopathy model in vivo.Item A simple optical coherence tomography quantification method for choroidal neovascularization(Liebert, 2015-06) Sulaiman, Rania S.; Quigley, Judith; Qi, Xiaoping; O'Hare, Michael N.; Grant, Maria B.; Boulton, Michael E.; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicinePurpose: Therapeutic efficacy is routinely assessed by measurement of lesion size using flatmounted choroids and confocal microscopy in the laser-induced choroidal neovascularization (L-CNV) rodent model. We investigated whether optical coherence tomography (OCT) quantification, using an ellipsoid volume measurement, was comparable to standard ex vivo evaluation methods for this model and whether this approach could be used to monitor treatment-related lesion changes. Methods: Bruch's membrane was ruptured by argon laser in the dilated eyes of C57BL/6J mice, followed by intravitreal injections of anti-VEGF164 or vehicle, or no injection. In vivo OCT images were acquired using Micron III or InVivoVue systems at 7, 10, and/or 14 days post-laser and neovascular lesion volume was calculated as an ellipsoid. Subsequently, lesion volume was compared to that calculated from confocal Z-stack images of agglutinin-stained choroidal flatmounts. Results: Ellipsoid volume measurement of orthogonal 2-dimensional OCT images obtained from different imaging systems correlated with ex vivo lesion volumes for L-CNV (Spearman's ρ=0.82, 0.75, and 0.82 at days 7, 10, and 14, respectively). Ellipsoid volume calculation allowed temporal monitoring and evaluation of CNV lesions in response to antivascular endothelial growth factor treatment. Conclusions: Ellipsoid volume measurements allow rapid, quantitative use of OCT for the assessment of CNV lesions in vivo. This novel method can be used with different OCT imaging systems with sensitivity to distinguish between treatment conditions. It may serve as a useful adjunct to the standard ex vivo confocal quantification, to assess therapeutic efficacy in preclinical models of CNV, and in models of other ocular diseases.Item Cancer Genetics Education in a Low- to Middle-Income Country: Evaluation of an Interactive Workshop for Clinicians in Kenya(PLoS, 2015-06) Hill, Jessica A.; Lee, Su Yeon; Corson, Timothy W.; Dimaras, Helen; Department of Ophthalmology, IU School of MedicineBackground Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills. Methods The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire. Results Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions. Conclusion A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.