- Browse by Author
Browsing by Author "Zimmers, Teresa A."
Now showing 1 - 10 of 62
Results Per Page
Sort Options
Item Activin A Causes Muscle Atrophy through MEF2C-Dependent Impaired Myogenesis(MDPI, 2022-03-25) Loumaye, Audrey; Lause, Pascale; Zhong, Xiaoling; Zimmers, Teresa A.; Bindels, Laure B.; Thissen, Jean-Paul; Surgery, School of MedicineActivin A (ActA) is considered to play a major role in cancer-induced cachexia (CC). Indeed, circulating ActA levels are elevated and predict survival in patients with CC. However, the mechanisms by which ActA mediates CC development and in particular skeletal muscle (SM) atrophy in humans are not yet fully understood. In this work, we aimed to investigate the effects of ActA on human SM and in mouse models of CC. We used a model of human muscle cells in culture to explore how ActA acts towards human SM. In this model, recombinant ActA induced myotube atrophy associated with the decline of MyHC-β/slow, the main myosin isoform in human muscle cells studied. Moreover, ActA inhibited the expression and activity of MEF2C, the transcription factor regulating MYH7, the gene which codes for MyHC-β/slow. This decrease in MEF2C was involved in the decline of MyHC-β/slow expression, since inhibition of MEF2C by a siRNA leads to the decrease in MyHC-β/slow expression. The relevance of this ActA/MEF2C pathway in vivo was supported by the parallel decline of MEF2C expression and SM mass, which are both blunted by ActA inhibition, in animal models of CC. In this work, we showed that ActA is a potent negative regulator of SM mass by inhibiting MyHC-β/slow synthesis through downregulation of MEF2C. This observation highlights a novel interaction between ActA signaling and MEF2C transcriptional activity which contributes to SM atrophy in CC models.Item ACVR2B antagonism as a countermeasure to multi‐organ perturbations in metastatic colorectal cancer cachexia(Wiley, 2020-12) Huot, Joshua R.; Pin, Fabrizio; Narasimhan, Ashok; Novinger, Leah J.; Keith, Austin S.; Zimmers, Teresa A.; Willis, Monte S.; Bonetto, Andrea; Surgery, School of MedicineBackground: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. Methods: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. Results: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. Conclusions: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.Item Addressing unmet needs for people with cancer cachexia: recommendations from a multistakeholder workshop(Wiley, 2022-04) Garcia, Jose M.; Dunne, Richard F.; Santiago, Kristen; Martin, Lisa; Birnbaum, Morris J.; Crawford, Jeffrey; Hendifar, Andrew E.; Kochanczyk, Martin; Moravek, Cassadie; Piccinin, Doris; Picozzi, Vincent; Roeland, Eric J.; Selig, Wendy K.D.; Zimmers, Teresa A.; Surgery, School of MedicineItem Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength(Nature Research, 2019-09-25) Aguilar-Perez, Alexandra; Pacheco-Costa, Rafael; Atkinson, Emily G.; Deosthale, Padmini; Davis, Hannah M.; Essex, Alyson L.; Dilley, Julian E.; Gomez, Leland; Rupert, Joseph E.; Zimmers, Teresa A.; Thompson, Roger J.; Allen, Matthew R.; Plotkin, Lilian I.; Anatomy and Cell Biology, School of MedicinePannexins (Panxs), glycoproteins that oligomerize to form hemichannels on the cell membrane, are topologically similar to connexins, but do not form cell-to-cell gap junction channels. There are 3 members of the family, 1-3, with Panx1 being the most abundant. All Panxs are expressed in bone, but their role in bone cell biology is not completely understood. We now report that osteocytic Panx1 deletion (Panx1Δot) alters bone mass and strength in female mice. Bone mineral density after reaching skeletal maturity is higher in female Panx1Δot mice than in control Panx1fl/fl mice. Further, osteocytic Panx1 deletion partially prevented aging effects on cortical bone structure and mechanical properties. Young 4-month-old female Panx1Δot mice exhibited increased lean body mass, even though pannexin levels in skeletal muscle were not affected; whereas no difference in lean body mass was detected in male mice. Furthermore, female Panx1-deficient mice exhibited increased muscle mass without changes in strength, whereas Panx1Δot males showed unchanged muscle mass and decreased in vivo maximum plantarflexion torque, indicating reduced muscle strength. Our results suggest that osteocytic Panx1 deletion increases bone mass in young and old female mice and muscle mass in young female mice, but has deleterious effects on muscle strength only in males.Item An Assessment of the Academic Impact of Shock Society Members(Wolters Kluwer, 2018-05) Milgrom, Daniel P.; Koniaris, Leonidas G.; Valsangkar, Nakul P.; Lad, Neha; Bell, Teresa M.; Wojcik, Brandon; Zimmers, Teresa A.; Surgery, School of MedicineProfessional society membership enhances career development and productivity by offering opportunities for networking and learning about recent advances in the field. The quality and contribution of such societies can be measured in part through the academic productivity, career status, and funding success rates of their members. Here, using Scopus, NIH RePORTER, and departmental websites, we compare characteristics of the Shock Society membership to those of the top 55 NIH-funded American university and hospital-based departments of surgery. Shock Society members' mean number of publications, citations and H-indices were all significantly higher than those of non-members in surgery departments (P < 0.001). A higher percentage of members also have received funding from the NIH (42.5% vs. 18.5%, P < 0.001). Regression analysis indicated that members were more likely to have NIH funding compared with non-members (OR 1.46, 95% CI 1.12-1.916). Trauma surgeons belonging to the Shock Society had a higher number of publications and greater NIH funding than those who did not (130.4 vs. 42.7, P < 0.001; 40.4% vs. 8.5%, P < 0.001). Aggregate academic metrics from the Shock Society were superior to those of the Association for Academic Surgery and generally for the Society of University Surgeons as well. These data indicate that the Shock Society represents a highly academic and productive group of investigators. For surgery faculty, membership is associated with greater academic productivity and career advancement. While it is difficult to ascribe causation, certainly the Shock Society might positively influence careers for its members.Item Bone Pain and Muscle Weakness in Cancer Patients(Springer, 2017-04) Milgrom, Daniel P.; Lad, Neha L.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of MedicinePURPOSE OF REVIEW: In this article, we will discuss the current understanding of bone pain and muscle weakness in cancer patients. We will describe the underlying physiology and mechanisms of cancer-induced bone pain (CIBP) and cancer-induced muscle wasting (CIMW), as well as current methods of diagnosis and treatment. We will discuss future therapies and research directions to help patients with these problems. RECENT FINDINGS: There are several pharmacologic therapies that are currently in preclinical and clinical testing that appear to be promising adjuncts to current CIBP and CIMW therapies. Such therapies include resiniferitoxin, which is a targeted inhibitor of noceciptive nerve fibers, and selective androgen receptor modulators, which show promise in increasing lean mass. CIBP and CIMW are significant causes of morbidity in affected patients. Current management is mostly palliative; however, targeted therapies are poised to revolutionize how these problems are treated.Item Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways(Frontiers, 2016) Barreto, Rafael; Mandili, Giorgia; Witzmann, Frank A.; Novelli, Francesco; Zimmers, Teresa A.; Bonetto, Andrea; Department of Surgery, IU School of MedicineCachexia represents one of the primary complications of colorectal cancer due to its effects on depletion of muscle and fat. Evidence suggests that chemotherapeutic regimens, such as Folfiri, contribute to cachexia-related symptoms. The purpose of the present study was to investigate the cachexia signature in different conditions associated with severe muscle wasting, namely Colon-26 (C26) and Folfiri-associated cachexia. Using a quantitative LC-MS/MS approach, we identified significant changes in 386 proteins in the quadriceps muscle of Folfiri-treated mice, and 269 proteins differentially expressed in the C26 hosts (p < 0.05; -1.5 ≥ fold change ≥ +1.5). Comparative analysis isolated 240 proteins that were modulated in common, with a large majority (218) that were down-regulated in both experimental settings. Interestingly, metabolic (47.08%) and structural (21.25%) proteins were the most represented. Pathway analysis revealed mitochondrial dysfunctions in both experimental conditions, also consistent with reduced expression of mediators of mitochondrial fusion (OPA-1, mitofusin-2), fission (DRP-1) and biogenesis (Cytochrome C, PGC-1α). Alterations of oxidative phosphorylation within the TCA cycle, fatty acid metabolism, and Ca(2+) signaling were also detected. Overall, the proteomic signature in the presence of both chemotherapy and cancer suggests the activation of mechanisms associated with movement disorders, necrosis, muscle cell death, muscle weakness and muscle damage. Conversely, this is consistent with the inhibition of pathways that regulate nucleotide and fatty acid metabolism, synthesis of ATP, muscle and heart function, as well as ROS scavenging. Interestingly, strong up-regulation of pro-inflammatory acute-phase proteins and a more coordinated modulation of mitochondrial and lipidic metabolisms were observed in the muscle of the C26 hosts that were different from the Folfiri-treated animals. In conclusion, our results suggest that both cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. These data support the undertaking of combination strategies that aim to both counteract tumor growth and reduce chemotherapy side effects.Item Cancer Cachexia: Involvement of an Expanding Macroenvironment(Elsevier, 2023) Pryce, Benjamin R.; Wang, David J.; Zimmers, Teresa A.; Ostrowski, Michael C.; Guttridge, Denis C.; Surgery, School of MedicineAdvanced cancers often present with the cachexia syndrome that impacts peripheral tissues, leading to involuntary weight loss and reduced prognosis. The central tissues undergoing depletion are skeletal muscle and adipose, but recent findings reveal an expanding tumor macroenvironment involving organ crosstalks that underlie the cachectic state.Item Changes in Serum Myostatin Levels in Alcoholic Hepatitis Correlate with Improvement in MELD(Springer Nature, 2021) Shamseddeen, Hani; Madathanapalli, Abhishek; Are, Vijay S.; Shah, Vijay H.; Sanyal, Arun J.; Qing, Tang; Liang, Tiebing; Gelow, Kayla; Zimmers, Teresa A.; Chalasani, Naga; Desai, Archita P.; Medicine, School of MedicineBackground: Alcoholic hepatitis (AH) is a serious clinical syndrome often associated with muscle wasting. Myostatin, a member of the transforming growth factor-β superfamily, has been studied in diseases with muscle wasting; however, the role of myostatin in AH is unknown. Aims: To investigate the association between myostatin, clinical variables, and outcomes in AH. Methods: We analyzed data for cases of AH and controls of heavy drinkers (HD) in TREAT001 (NCT02172898) with serum myostatin levels (AH: n = 131, HD: n = 124). We compared characteristics between the two groups at baseline, 30, and 90 days and explored correlations between myostatin and clinical variables. We then modeled the relationship of myostatin to other variables, including mortality. Results: Baseline median myostatin was lower in AH compared to HD (males: 1.58 vs 3.06 ng/ml, p < 0.001; females: 0.84 vs 2.01 ng/ml, p < 0.001). In multivariable linear regression, bilirubin, WBC, and platelet count remained negatively correlated with myostatin in AH. AH females who died at 90 days had significantly lower myostatin, but in a multivariable logistic model with MELD and myostatin, only MELD remained significantly associated with 90-day mortality. During 1-year follow-up, AH cases (n = 30) demonstrated an increase in myostatin (mean, 1.73 ng/ml) which correlated with decreasing MELD scores (ρ = - 0.42, p = 0.01). Conclusions: Myostatin levels are significantly lower in AH compared to HD and are negatively correlated with total bilirubin, WBC, and platelet count. Myostatin increased as patients experienced decreases in MELD. Overall, myostatin demonstrated a dynamic relationship with AH outcomes and future studies are needed to understand the prognostic role of myostatin in AH.Item Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs(Impact, 2016-06) Barreto, Rafael; Waning, David L.; Gao, Hongyu; Liu, Yunlong; Zimmers, Teresa A.; Bonetto, Andrea; Department of Surgery, IU School of MedicineCachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy.