- Browse by Author
Browsing by Author "Zheng, Yanjiang"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Efficient In Vivo Homology-Directed Repair Within Cardiomyocytes(American Heart Association, 2022) Zheng, Yanjiang; VanDusen, Nathan J.; Butler, Catalina E.; Ma, Qing; King, Justin S.; Pu, William T.; Pediatrics, School of MedicineItem Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements(MDPI, 2023-03-29) Zheng, Yanjiang; VanDusen, Nathan J.; Pediatrics, School of MedicineThe rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.Item Precise genome-editing in human diseases: mechanisms, strategies and applications(Springer Nature, 2024-02-26) Zheng, Yanjiang; Li, Yifei; Zhou, Kaiyu; Li, Tiange; VanDusen, Nathan J.; Hua, Yimin; Pediatrics, School of MedicinePrecise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.