ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Ji"

Now showing 1 - 10 of 16
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid
    (Elsevier, 2018-02-06) Pavlova, Natalya N.; Hui, Sheng; Ghergurovich, Jonathan M.; Fan, Jing; Intlekofer, Andrew M.; White, Richard M.; Rabinowitz, Joshua D.; Thompson, Craig B.; Zhang, Ji; Pediatrics, School of Medicine
    When mammalian cells are deprived of glutamine, exogenous asparagine rescues cell survival and growth. Here we report that this rescue results from use of asparagine in protein synthesis. All mammalian cell lines tested lacked cytosolic asparaginase activity and could not utilize asparagine to produce other amino acids or biosynthetic intermediates. Instead, most glutamine-deprived cell lines are capable of sufficient glutamine synthesis to maintain essential amino acid uptake and production of glutamine-dependent biosynthetic precursors, with the exception of asparagine. While experimental introduction of cytosolic asparaginase could enhance the synthesis of glutamine and increase tricarboxylic acid cycle anaplerosis and the synthesis of nucleotide precursors, cytosolic asparaginase suppressed the growth and survival of cells in glutamine-depleted medium in vitro and severely compromised the in vivo growth of tumor xenografts. These results suggest that the lack of asparaginase activity represents an evolutionary adaptation to allow mammalian cells to survive pathophysiologic variations in extracellular glutamine.
  • Loading...
    Thumbnail Image
    Item
    Asparagine bioavailability regulates the translation of MYC oncogene
    (Springer Nature, 2022) Srivastava, Sankalp; Jiang, Jie; Misra, Jagannath; Seim, Gretchen; Staschke, Kirk A.; Zhong, Minghua; Zhou, Leonardo; Liu, Yu; Chen, Chong; Davé, Utpal; Kapur, Reuben; Batra, Sandeep; Zhang, Chi; Zhou, Jiehao; Fan, Jing; Wek, Ronald C.; Zhang, Ji; Pediatrics, School of Medicine
    Amino acid restriction has recently emerged as a compelling strategy to inhibit tumor growth. Recent work suggests that amino acids can regulate cellular signaling in addition to their role as biosynthetic substrates. Using lymphoid cancer cells as a model, we found that asparagine depletion acutely reduces the expression of c-MYC protein without changing its mRNA expression. Furthermore, asparagine depletion inhibits the translation of MYC mRNA without altering the rate of MYC protein degradation. Of interest, the inhibitory effect on MYC mRNA translation during asparagine depletion is not due to the activation of the general controlled nonderepressible 2 (GCN2) pathway and is not a consequence of the inhibition of global protein synthesis. In addition, both the 5' and 3' untranslated regions (UTRs) of MYC mRNA are not required for this inhibitory effect. Finally, using a MYC-driven mouse B cell lymphoma model, we found that shRNA inhibition of asparagine synthetase (ASNS) or pharmacological inhibition of asparagine production can significantly reduce the MYC protein expression and tumor growth when environmental asparagine becomes limiting. Since MYC is a critical oncogene, our results uncover a molecular connection between MYC mRNA translation and asparagine bioavailability and shed light on a potential to target MYC oncogene post-transcriptionally through asparagine restriction.
  • Loading...
    Thumbnail Image
    Item
    Asparagine restriction enhances CD8+ T cell metabolic fitness and antitumoral functionality through an NRF2-dependent stress response
    (Springer Nature, 2023) Gnanaprakasam, J. N. Rashida; Kushwaha, Bhavana; Liu, Lingling; Chen, Xuyong; Kang, Siwen; Wang, Tingting; Cassel, Teresa A.; Adams, Christopher M.; Higashi, Richard M.; Scott, David A.; Xin, Gang; Li, Zihai; Yang, Jun; Lane, Andrew N.; Fan, Teresa W. M.; Zhang, Ji; Wang, Ruoning; Pediatrics, School of Medicine
    Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.
  • Loading...
    Thumbnail Image
    Item
    Asparagine starvation suppresses histone demethylation through iron depletion
    (Elsevier, 2023-03-16) Jiang, Jie; Srivastava, Sankalp; Liu, Sheng; Seim, Gretchen; Claude, Rodney; Zhong, Minghua; Cao, Sha; Davé, Utpal; Kapur, Reuben; Mosley, Amber L.; Zhang, Chi; Wan, Jun; Fan, Jing; Zhang, Ji; Pediatrics, School of Medicine
    Intracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.
  • Loading...
    Thumbnail Image
    Item
    Asparagine, a critical limiting metabolite during glutamine starvation
    (Taylor & Francis, 2018-04-11) Jiang, Jie; Pavlova, Natalya N.; Zhang, Ji; Pediatrics, School of Medicine
    A challenge of targeting glutamine metabolism in cancer is that tumor cells develop various strategies to adapt to glutamine limitation. We found that asparagine plays a critical role in supporting protein synthesis during glutamine starvation, highlighting a possible approach to optimize the therapeutic efficacy of targeting glutamine metabolism in cancer.
  • Loading...
    Thumbnail Image
    Item
    Asparagine: A Metabolite to Be Targeted in Cancers
    (MDPI, 2021-06-19) Jiang, Jie; Batra, Sandeep; Zhang, Ji; Pediatrics, School of Medicine
    Amino acids play central roles in cancer progression beyond their function as building blocks for protein synthesis. Thus, targeting amino acid acquisition and utilization has been proved to be therapeutically beneficial in various pre-clinical models. In this regard, depletion of circulating asparagine, a nonessential amino acid, by L-asparaginase has been used in treating pediatric acute lymphoblastic leukemia (ALL) for decades. Of interest, unlike most solid tumor cells, ALL cells lack the ability to synthesize their own asparagine de novo effectively. However, only until recently, growing evidence suggests that solid tumor cells strive to acquire adequate amounts of asparagine to support tumor progression. This process is subjected to the regulation at various levels, including oncogenic signal, tumor-niche interaction, intratumor heterogeneity and dietary accessibility. We will review the literature on L-asparaginase-based therapy as well as recent understanding of asparagine metabolism in solid tumor progression, with the hope of shedding light into a broader cancer therapeutic strategy by perturbing its acquisition and utilization.
  • Loading...
    Thumbnail Image
    Item
    Combined heterozygosity of FLT3 ITD, TET2, and DNMT3A results in aggressive leukemia
    (The American Society for Clinical Investigation, 2022-09-08) Ramdas, Baskar; Reddy, Palam Lakshmi; Mali, Raghuveer Singh; Pasupuleti, Santhosh Kumar; Zhang, Ji; Kelley, Mark R.; Paczesny, Sophie; Zhang, Chi; Kapur, Reuben; Pediatrics, School of Medicine
    Heterozygous mutations in FLT3ITD, TET2, and DNMT3A are associated with hematologic malignancies in humans. In patients, cooccurrence of mutations in FLT3ITD combined with TET2 (TF) or FLT3ITD combined with DNMT3A (DF) are frequent. However, in some rare complex acute myeloid leukemia (AML), all 3 mutations cooccur - i.e., FLT3ITD, TET2, and DNMT3A (TFD). Whether the presence of these mutations in combination result in quantitative or qualitative differences in disease manifestation has not been investigated. We generated mice expressing heterozygous Flt3ITD and concomitant for either heterozygous loss of Tet2 (TF) or Dnmt3a (DF) or both (TFD). TF and DF mice did not induce disease early on, in spite of similar changes in gene expression; during the same time frame, an aggressive form of transplantable leukemia was observed in TFD mice, which was mostly associated with quantitative but not qualitative differences in gene expression relative to TF or DF mice. The gene expression signature of TFD mice showed remarkable similarity to the human TFD gene signature at the single-cell RNA level. Importantly, TFD-driven AML responded to a combination of drugs that target Flt3ITD, inflammation, and methylation in a mouse model, as well as in a PDX model of AML bearing 3 mutations.
  • Loading...
    Thumbnail Image
    Item
    Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells
    (Springer Nature, 2022) Halbrook, Christopher J.; Thurston, Galloway; Boyer, Seth; Anaraki, Cecily; Jiménez, Jennifer A.; McCarthy, Amy; Steele, Nina G.; Kerk, Samuel A.; Hong, Hanna S.; Lin, Lin; Law, Fiona V.; Felton, Catherine; Scipioni, Lorenzo; Sajjakulnukit, Peter; Andren, Anthony; Beutel, Alica K.; Singh, Rima; Nelson, Barbara S.; Van Den Bergh, Fran; Krall, Abigail S.; Mullen, Peter J.; Zhang, Li; Batra, Sandeep; Morton, Jennifer P.; Stanger, Ben Z.; Christofk, Heather R.; Digman, Michelle A.; Beard, Daniel A.; Viale, Andrea; Zhang, Ji; Crawford, Howard C.; di Magliano, Marina Pasca; Jorgensen, Claus; Lyssiotis, Costas A.; Pediatrics, School of Medicine
    The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG–asparaginase sensitizes tumors to mitochondrial targeting with phenformin.
  • Loading...
    Thumbnail Image
    Item
    Enhancing Leukemia Treatment: The Role of Combined Therapies Based on Amino Acid Starvation
    (MDPI, 2024-03-16) Chen, Can; Zhang, Ji; Pediatrics, School of Medicine
    Cancer cells demand amino acids beyond their usage as "building blocks" for protein synthesis. As a result, targeting amino acid acquisition and utilization has emerged as a pivotal strategy in cancer treatment. In the setting of leukemia therapy, compelling examples of targeting amino acid metabolism exist at both pre-clinical and clinical stages. This review focuses on summarizing novel insights into the metabolism of glutamine, asparagine, arginine, and tryptophan in leukemias, and providing a comprehensive discussion of perturbing their metabolism to improve the therapeutic outcomes. Certain amino acids, such as glutamine, play a vital role in the energy metabolism of cancer cells and the maintenance of redox balance, while others, such as arginine and tryptophan, contribute significantly to the immune microenvironment. Therefore, assessing the efficacy of targeting amino acid metabolism requires comprehensive strategies. Combining traditional chemotherapeutics with novel strategies to perturb amino acid metabolism is another way to improve the outcome in leukemia patients via overcoming chemo-resistance or promoting immunotherapy. In this review, we also discuss several ongoing or complete clinical trials, in which targeting amino acid metabolism is combined with other chemotherapeutics in treating leukemia.
  • Loading...
    Thumbnail Image
    Item
    The Essential Role of the Non-Essential Amino Acid Asparagine in Lymphoid Malignancies
    (2023-05) Srivastava, Sankalp; Zhang, Ji; Dong, X. Charlie; Mosley, Amber L.; Wek, Ronald C.
    Cancer cells display increased metabolic demands to support their proliferation and biosynthetic needs. It has been extensively shown in cancers, that amino acids have functions beyond the role of mRNA translation. The breadth of functions makes amino acid restriction an effective strategy for cancer therapy; hence an important line of research involves targeting amino acid acquisition and metabolism therapeutically. Currently, asparagine depletion via L-Asparaginase in acute lymphoblastic leukemia (ALL) remains the only clinically approved therapy to date. In the first project, we showed that ALL cells are auxotrophic for asparagine and rely on exogenous sources for this non-essential amino acid. However, sensitivity to L-Asparaginase therapy is mitigated by the expression of the enzyme asparagine synthetase (ASNS), involved in de novo asparagine biosynthesis. We showed that this adaptive response requires two essential steps; demethylation of the ASNS promoter and recruitment of activating transcription factor 4 (ATF4) to the promoter to drive ASNS transcription. Our follow-up study in ALL cells showed that asparagine bioavailability (through de novo biosynthesis or exogenous sources) is essential to maintain the expression of the critical oncogene c-MYC. c-MYC is a potent transcription factor and is dysregulated in over 60% of cancers, including hematopoietic malignancies. We showed that this regulation by asparagine is primarily at the translation level and c-MYC expression is rescued only when exogenous asparagine is available or when cells can undertake de novo biosynthesis. At the biochemical level, asparagine depletion also causes an induction of ATF4 mediated stress response and suppression of global translation mediated by decreased mammalian target of rapamycin complex 1 (mTORC1) activity. However, we found that neither inhibition of the stress response or rescuing global translation rescued c-MYC protein expression. We also extended this observation to c-MYC-driven lymphomas using cell lines and orthotopic in vivo models. We showed that genetic inhibition of ASNS or pharmacological inhibition of asparagine production can significantly limit c-MYC protein and tumor growth when environmental asparagine is limiting. Overall, our work shows an essential role for asparagine in lymphoid cancers and has expanded on the usage of L-Asparaginase to resistant leukemias and lymphomas.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University