- Browse by Author
Browsing by Author "Ye, Zhenqing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection(National Academy of Sciences, 2019-06-11) Zhu, Bibo; Zhang, Ruixuan; Li, Chaofan; Jiang, Li; Xiang, Min; Ye, Zhenqing; Kita, Hirohito; Melnick, Ari M.; Dent, Alexander L.; Sun, Jie; Pediatrics, School of MedicineNeutrophils are vital for antimicrobial defense; however, their role during viral infection is less clear. Furthermore, the molecular regulation of neutrophil fate and function at the viral infected sites is largely elusive. Here we report that BCL6 deficiency in myeloid cells exhibited drastically enhanced host resistance to severe influenza A virus (IAV) infection. In contrast to the notion that BCL6 functions to suppress innate inflammation, we find that myeloid BCL6 deficiency diminished lung inflammation without affecting viral loads. Using a series of Cre-transgenic, reporter, and knockout mouse lines, we demonstrate that BCL6 deficiency in neutrophils, but not in monocytes or lung macrophages, attenuated host inflammation and morbidity following IAV infection. Mechanistically, BCL6 bound to the neutrophil gene loci involved in cellular apoptosis in cells specifically at the site of infection. As such, BCL6 disruption resulted in increased expression of apoptotic genes in neutrophils in the respiratory tract, but not in the circulation or bone marrow. Consequently, BCL6 deficiency promoted tissue neutrophil apoptosis. Partial neutrophil depletion led to diminished pulmonary inflammation and decreased host morbidity. Our results reveal a previously unappreciated role of BCL6 in modulating neutrophil apoptosis at the site of infection for the regulation of host disease development following viral infection. Furthermore, our studies indicate that tissue-specific regulation of neutrophil survival modulates host inflammation and tissue immunopathology during acute respiratory viral infection.Item PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae(Science Immunology, 2019-06-14) Wang, Zheng; Wang, Shaohua; Goplen, Nick P.; Li, Chaofan; Cheon, In Su; Dai, Qigang; Huang, Su; Shan, Jinjun; Ma, Chaoyu; Ye, Zhenqing; Xiang, Min; Limper, Andrew H.; Porquera, Eva-Carmona; Kohlmeier, Jacob E.; Kaplan, Mark H.; Zhang, Nu; Johnson, Aaron J.; Vassallo, Robert; Sun, Jie; Microbiology and Immunology, School of MedicineCD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 costimulation after acute influenza infection. These TRM cells have both exhausted-like phenotypes and memory features and provide heterologous immunity against secondary infection. PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective immunity.Item The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality(Elsevier, 2019-09-17) Li, Chaofan; Zhu, Bibo; Son, Young Min; Wang, Zheng; Jiang, Li; Xiang, Min; Ye, Zhenqing; Beckermann, Kathryn E.; Wu, Yue; Jenkins, James W.; Siska, Peter J.; Vincent, Benjamin G.; Prakash, Y. S.; Peikert, Tobias; Edelson, Brian T.; Taneja, Reshma; Kaplan, Mark H.; Rathmell, Jeffrey C.; Dong, Haidong; Hitosugi, Taro; Sun, Jie; Microbiology and Immunology, School of Medicine