- Browse by Author
Browsing by Author "Yang, Linlin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The Enzyme-Mediated Direct Reversal of a Dithymine Photoproduct in Germinating Endospores(MDPI, 2013-06-25) Yang, Linlin; Li, Lei; Chemistry and Chemical Biology, School of ScienceSpore photoproduct lyase (SPL) repairs a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, which is commonly called spore photoproduct, or SP, in germinating endospores. SP is the exclusive DNA photo-damaging product found in endospores; its generation and swift repair by SPL are responsible for the spores’ extremely high UV resistance. Early in vivo studies suggested that SPL utilizes a direct reversal strategy to repair SP in the absence of light. Recently, it has been established that SPL belongs to the radical S-adenosylmethionine (SAM) superfamily. The enzymes in this superfamily utilize a tri-cysteine CXXXCXXC motif to bind a [4Fe-4S] cluster. The cluster provides an electron to the S-adenosylmethionine (SAM) to reductively cleave its C5′-S bond, generating a reactive 5′-deoxyadenosyl (5′-dA) radical. This 5′-dA radical abstracts the proR hydrogen atom from the C6 carbon of SP to initiate the repair process; the resulting SP radical subsequently fragments to generate a putative thymine methyl radical, which accepts a back-donated H atom to yield the repaired TpT. The H atom donor is suggested to be a conserved cysteine141 in B. subtilis SPL; the resulting thiyl radical likely interacts with a neighboring tyrosine99 before oxidizing the 5′-dA to 5′-dA radical and, subsequently, regenerating SAM. These findings suggest SPL to be the first enzyme in the large radical SAM superfamily (>44,000 members) to utilize a radical transfer pathway for catalysis; its study should shed light on the mechanistic understanding of the SAM regeneration process in other members of the superfamily.Item Insights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue(Frontiers, 2017-03-28) Yang, Linlin; Li, Lei; Chemistry and Chemical Biology, School of ScienceUV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at least a cysteine and two tyrosine residues. This mechanism is consistent with the recently solved SPL structure that shows all three residues are located in proximity and thus able to participate in the radical transfer process during the enzyme catalysis. In contrast, an earlier in vivo mutational study identified a glycine to arginine mutation at the position 168 on the B. subtilis SPL that is >15 Å away from the enzyme active site. This mutation appears to abolish the enzyme activity because endospores carrying this mutant were sensitive to UV light. To understand the molecular basis for this rendered enzyme activity, we constructed two SPL mutations G168A and G168R, examined their repair of dinucleotide SP TpT, and found that both mutants exhibit reduced enzyme activity. Comparing with the wildtype (WT) SPL enzyme, the G168A mutant slows down the SP TpT repair by 3~4-fold while the G168R mutant by ~ 80-fold. Both mutants exhibit a smaller apparent (DV) kinetic isotope effect (KIE) but a bigger competitive (DV/K) KIE than that by the WT SPL. Moreover, the G168R mutant also produces a large portion of the abortive repair product TpT-[Formula: see text]; the formation of which indicates that cysteine 141 is no longer well positioned as the H-donor to the thymine allylic radical intermediate. All these data imply that the mutation at the remote glycine 168 residue alters the enzyme 3D structure, subsequently reducing the SPL activity by changing the positions of the essential amino acids involved in the radical transfer process.Item Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the Clostridium acetobutylicum Spore Photoproduct Lyas(Wiley, 2017-01) Yang, Linlin; Adhikari, Jagat; Gross, Michael L.; Li, Lei; Chemistry and Chemical Biology, School of ScienceItem Spore photoproduct lyase: the known, the controversial, and the unknown(2015) Yang, Linlin; Li, Lei; Department of Chemistry & Chemical Biology, IU School of ScienceSpore photoproduct lyase (SPL) repairs 5-thyminyl-5,6-dihydrothymine, a thymine dimer that is also called the spore photoproduct (SP), in germinating endospores. SPL is a radical S-adenosylmethionine (SAM) enzyme, utilizing the 5′-deoxyadenosyl radical generated by SAM reductive cleavage reaction to revert SP to two thymine residues. Here we review the current progress in SPL mechanistic studies. Protein radicals are known to be involved in SPL catalysis; however, how these radicals are quenched to close the catalytic cycle is under debate.Item Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme—The spore photoproduct lyase(Elsevier, 2017-04) Yang, Linlin; Jian, Yajun; Setlow, Peter; Li, Lei; Chemistry and Chemical Biology, School of ScienceDNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01–0.2 min−1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3–0.4 min−1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.