- Browse by Author
Browsing by Author "Xu, Xiaofeng"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018(Copernicus, 2022-01-13) Tao, Hui; Song, Kaishan; Liu, Ge; Wang, Qiang; Wen, Zhidan; Jacinthe, Pierre-Andre; Xu, Xiaofeng; Du, Jia; Shang, Yingxin; Li, Sijia; Wang, Zongming; Lyu, Lili; Hou, Junbin; Wang, Xiang; Liu, Dong; Shi, Kun; Zhang, Baohua; Duan, Hongtao; Earth and Environmental Sciences, School of ScienceWater clarity serves as a sensitive tool for understanding the spatial pattern and historical trend in lakes' trophic status. Despite the wide availability of remotely sensed data, this metric has not been fully explored for long-term environmental monitoring. To this end, we utilized Landsat top-of-atmosphere reflectance products within Google Earth Engine in the period 1984–2018 to retrieve the average Secchi disk depth (SDD) for each lake in each year. Three SDD datasets were used for model calibration and validation from different field campaigns mainly conducted during 2004–2018. The red blue band ratio algorithm was applied to map SDD for lakes (>0.01 km2) based on the first SDD dataset, where R2=0.79 and relative RMSE (rRMSE) =61.9 %. The other two datasets were used to validate the temporal transferability of the SDD estimation model, which confirmed the stable performance of the model. The spatiotemporal dynamics of SDD were analyzed at the five lake regions and individual lake scales, and the average, changing trend, lake number and area, and spatial distribution of lake SDDs across China were presented. In 2018, we found the number of lakes with SDD <2 m accounted for the largest proportion (80.93 %) of the total lakes, but the total areas of lakes with SDD of <0.5 and >4 m were the largest, both accounting for about 24.00 % of the total lakes. During 1984–2018, lakes in the Tibetan–Qinghai Plateau region (TQR) had the clearest water with an average value of 3.32±0.38 m, while that in the northeastern region (NLR) exhibited the lowest SDD (mean 0.60±0.09 m). Among the 10 814 lakes with SDD results for more than 10 years, 55.42 % and 3.49 % of lakes experienced significant increasing and decreasing trends, respectively. At the five lake regions, except for the Inner Mongolia–Xinjiang region (MXR), more than half of the total lakes in every other region exhibited significant increasing trends. In the eastern region (ELR), NLR and Yungui Plateau region (YGR), almost more than 50 % of the lakes that displayed increase or decrease in SDD were mainly distributed in the area range of 0.01–1 km2, whereas those in the TQR and MXR were primarily concentrated in large lakes (>10 km2). Spatially, lakes located in the plateau regions generally exhibited higher SDD than those situated in the flat plain regions. The dataset is freely available at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.271571, Tao et al., 2021).Item Global divergent trends of algal blooms detected by satellite during 1982–2018(Wiley, 2022-04) Fang, Chong; Song, Kaishan; Paerl, Hans W.; Jacinthe, Pierre-Andre; Wen, Zhidan; Liu, Ge; Tao, Hui; Xu, Xiaofeng; Kutser, Tiit; Wang, Zongming; Duan, Hongtao; Shi, Kun; Shang, Yingxin; Lyu, Lili; Li, Sijia; Yang, Qian; Lyu, Dongmei; Mao, Dehua; Zhang, Baohua; Cheng, Shuai; Lyu, Yunfeng; Earth and Environmental Sciences, School of ScienceAlgal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2) around the globe over a 37-year time span (1982–2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.Item Hedgehog Signaling in CNS Remyelination(MDPI, 2022-07-21) Fang, Minxi; Tang, Tao; Qiu, Mengsheng; Xu, Xiaofeng; Anatomy, Cell Biology and Physiology, School of MedicineRemyelination is a fundamental repair process in the central nervous system (CNS) that is triggered by demyelinating events. In demyelinating diseases, oligodendrocytes (OLs) are targeted, leading to myelin loss, axonal damage, and severe functional impairment. While spontaneous remyelination often fails in the progression of demyelinating diseases, increased understanding of the mechanisms and identification of targets that regulate myelin regeneration becomes crucial. To date, several signaling pathways have been implicated in the remyelination process, including the Hedgehog (Hh) signaling pathway. This review summarizes the current data concerning the complicated roles of the Hh signaling pathway in the context of remyelination. We will highlight the open issues that have to be clarified prior to bringing molecules targeting the Hh signaling to demyelinating therapy.