- Browse by Author
Browsing by Author "Xu, Linlin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item CD166 modulates disease progression and osteolytic disease in multiple myeloma(2016-03-16) Xu, Linlin; Xu, LinlinMultiple myeloma (MM) is an incurable malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM) and by multiple osteolytic lesions throughout the skeleton. We previously reported that CD166 is a functional molecule on normal hematopoietic stem cells (HSC) that plays a critical role in HSC homing and engraftment, suggesting that CD166 is involved in HSC trafficking and lodgment. CD166, a member of the immunoglobulin superfamily capable of mediating homophilic interactions, has been shown to enhance metastasis and invasion in several tumors. However, whether CD166 is involved in MM and plays a role in MM progression has not been addressed. We demonstrated that a fraction of all human MM cell lines tested and MM patients’ BM CD138+ cells express CD166. Additionally, CD166+ cells preferentially home to the BM of NSG mice. Knocking-down (KD) CD166 expression on MM cells with shRNA reduced their homing to the BM. Furthermore, in a long-term xenograft model, NSG mice inoculated with CD166KD cells showed delayed disease progression and prolonged survival compared to mice receiving mock transduced cells. To examine the potential role of CD166 in osteolytic lesions, we first used a novel Ex Vivo Organ Culture Assay (EVOCA) which creates an in vitro 3D system for the interaction of MM cells with the bone microenvironment. EVOCA data from MM cells lines as well as from primary MM patients’ CD138+ BM cells demonstrated that bone osteolytic resorption was significantly reduced when CD166 was absent on MM cells or calvarial cells. We then confirmed our ex vivo findings with intra-tibial inoculation of MM cells in vivo. Mice inoculated with CD166KD cells had significantly less osteolytic lesions. Further analysis demonstrated that CD166 expression on MM cells alters bone remodeling by inhibiting RUNX2 gene expression in osteoblast precursors and increasing RANKL to OPG ratio in osteoclast precursors. We also identified that CD166 is indispensable for osteoclastogenesis via the activation of TRAF6-dependent signaling pathways. These results suggest that CD166 directs MM cell homing to the BM and promotes MM disease progression and osteolytic disease. CD166 may serve as a therapeutic target in the treatment of MM.Item Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma(American Association for Cancer Research, 2016-12-01) Xu, Linlin; Mohammad, Khalid S.; Wu, Hao; Crean, Colin; Poteat, Bradley; Cheng, Yinghua; Cardoso, Angelo A.; Machal, Christophe; Hanenberg, Helmut; Abonour, Rafat; Kacena, Melissa A.; Chirgwin, John; Suvannasankha, Attaya; Srour, Edward F.; Microbiology and Immunology, School of MedicineMultiple myeloma (MM) is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in MM cell lines and primary bone marrow (BM) cells from patients. CD166+ MM cells homed more efficiently than CD166− cells to the BM of engrafted immunodeficient NSG mice. CD166 silencing in MM cells enabled longer survival, a smaller tumor burden and less osteolytic lesions, as compared to mice bearing control cells. CD166 deficiency in MM cell lines or CD138+ BM cells from MM patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Further, CD166 deficiency in MM cells also reduced formation of osteolytic disease in vivo after intra-tibial engraftment. Mechanistic investigation revealed that CD166 expression in MM cells inhibited osteoblastogenesis of BM-derived osteoblast progenitors by suppressing RUNX2 gene expression. Conversely, CD166 expression in MM cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in MM cell homing to the BM and MM progression, rationalizing its further study as a candidate therapeutic target for MM treatment.Item Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow(Ferrata Storti Foundation, 2017-11) Clinkenbeard, Erica L.; Hanudel, Mark R.; Stayrook, Keith R.; Appaiah, Hitesh Nidumanda; Farrow, Emily G.; Cass, Taryn A.; Summers, Lelia J.; Ip, Colin S.; Hum, Julia M.; Thomas, Joseph C.; Ivan, Mircea; Richine, Briana M.; Chan, Rebecca J.; Clemens, Thomas L.; Schipani, Ernestina; Sabbagh, Yves; Xu, Linlin; Srour, Edward F.; Alvarez, Marta B.; Kacena, Melissa A.; Salusky, Isidro B.; Ganz, Tomas; Nemeth, Elizabeta; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineItem Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function(ASH, 2017-12) Mohamad, Safa F.; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J.; Abeysekera, Irushi; Himes, Evan R.; Wu, Hao; Alvarez, Marta B.; Davis, Korbin M.; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A.; Srour, Edward F.; Biomedical Sciences and Comprehensive Care, School of DentistryNetworking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)–derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell–associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase–positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.Item ROLE OF CD166 IN MULTIPLE MYELOMA CELL HOMING TO THE BONE MARROW MICROENVIRONMENT AND DISEASE PROGRESSION(Office of the Vice Chancellor for Research, 2014-04-11) Xu, Linlin; Machal, Christophe; Wu, Hao; Poteat, Bradley; Crean, Colin; Cardoso, Angelo A; Chirgwin, John M; Hanenberg, Helmut; Mohammad, Khalid S; Suvannasankha, Attaya; Srour, Edward FMultiple myeloma (MM) is a plasma cell malignancy characterized by multiple lytic lesions throughout the skeleton, suggesting that trafficking of MM cells from the bone marrow (BM) and lodgment of these cells at secondary sites is important in disease progression. CD38+CD138- MM cells were previously characterized as putative MM stem cells (MMSC, Cancer Res. 2008; 68(1):190-7.). We analyzed CD38+CD138- cells contained within the MM cell line H929 and determined that a fraction of these cells (29.9%±1.4%) expresses CD166. CD166 is a member of the immunoglobulin superfamily capable of mediating both homophilic and heterophilic (CD6) interactions and has been shown to enhance metastasis and invasion in several tumors including breast cancer and melanoma. Studies from our laboratory suggest that CD38+CD138-CD166+ MM cells possess many functional properties commonly associated with MMSC including cell cycle quiescence, maintenance and propagation of daughter cells on a stromal substrate and gene expression profile. We hypothesized that CD166 promotes MM cell trafficking to the BM and is critical for disease progression. To test this hypothesis, H929-GFP myeloma cells were injected intravenously into NSG mice and GFP cells were recovered from the BM 14hr later. While only 3.3%±1.5% of total H929-GFP cells express the CD38+CD138- phenotype, the frequency of CD38+CD138- cells contained in BM-homed H929-GFP cells was significantly higher (53.4%±3.7%, n=3, p<0.01), suggesting a preferential homing of MMSC to the marrow microenvironment. Interestingly, whereas only 29.9%±1.4% of CD38+CD138- cells expressed CD166 prior to injection, 84.1%±10.8% of BM-homed H929-GFP CD38+CD138- cells expressed CD166 (n=3, p<0.01), suggesting that CD166 plays a critical role in directing homing of MM cells to the BM. Next, CD166 expression on H929-GFP cells was knocked down (KD) with shRNA in order to examine if reduced CD166 expression inhibit the homing of MM cells to the BM. The number of BM-homed GFP cells was significantly decreased for CD166KD cells (5658±904, n=6) compared to mock control (8551±848, n=6; p<0.05). Interestingly, cells in which suppression of CD166 expression was not achieved with shRNA homed preferentially to the BM (4.3%±0.3% CD166+cells in CD166 KD H929-GFP before injection versus 29.3%±3.6% in BM-homed GFP cells). Then we compared the progression of MM in NSG mice initiated with mock control or CD166 KD H929-GFP cells. Disease progression in mice receiving control cells was more rapid compared to that in mice receiving CD166KD cells as evidenced by serum levels of human IgA (kappa) at 4 weeks posttransplantation (240.5±67.1ng/ml versus 45.1±33.0ng/ml, n=3; p<0.05). We next examined the potential role of CD166 in osteolytic lesions using a novel Ex Vivo Organ Culture Assay (EVOCA) in which MM cells are co-cultured over calvariae from 10d-old pups for 7 days creating an in vitro 3D system for the interaction of MM cells with bone microenvironment. Data from EVOCA with H929 cells showed that bone osteolytic lesions are substantially reduced when CD166 is absent on either MM (CD166- fraction) or osteoblast lineage cells (calvariae from CD166-/- mice). Furthermore, co-culturing CD166+ or CD166- H929 cells with bone marrow stromal cells (BMSC) from WT or CD166-/- mice revealed that mRNA levels of receptor activator of NF-κB ligand (RANKL) are decreased when CD166 is absent on either MM or stromal cells while mRNA levels of osteoprotegerin (OPG), an important inhibitor of osteoclastogenesis, are not altered. This resulted in decreased RANKL/OPG ratios in cultures containing a CD166- component suggesting reduced MM-induced osteoclastogenesis in the absence of CD166. Interestingly, levels of M-CSF and IL-6 were similar in all these cultures suggesting that loss of CD166 may mediate suppression of osteolytic lesions through the downregulation of RANKL. Together, these results suggest that CD166 plays an important role in homing and retention of MM cells in the BM and promotes MM disease progression as well as bone-lytic disease and that CD166 may serve as a therapeutic target in the treatment of MM.