- Browse by Author
Browsing by Author "Wu, Yue"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Acoustic assembly of cell spheroids in disposable capillaries(IOP, 2018-12) Wu, Yue; Ao, Zheng; Chen, Bin; Muhsen, Maram; Bondesson, Maria; Lu, Xiongbin; Guo, Feng; Medical and Molecular Genetics, School of MedicineMulticellular spheroids represent a promising approach to mimic 3D tissues in vivo for emerging applications in regenerative medicine, therapeutic screening, and drug discovery. Conventional spheroid fabrication methods, such as the hanging drop method, suffer from low-throughput, long time, complicated procedure, and high heterogeneity in spheroid size. In this work, we report a simple yet reliable acoustic method to rapidly assemble cell spheroids in capillaries in a replicable and scalable manner. Briefly, by introducing a coupled standing surface acoustic wave, we are able to generate a linear pressure node array with 300 trapping nodes simultaneously. This enables us to continuously fabricate spheroids in a high-throughput manner with minimal variability in spheroid size. In a proof of concept application, we fabricated cell spheroids of mouse embryonic carcinoma (P19) cells, which grew well and retained differentiation potential in vitro. Based on the advantages of the non-invasive, contactless and label-free acoustic cell manipulation, our method employs the coupling strategy to assemble cells in capillaries, and further advances 3D spheroid assembly technology in an easy, cost-efficient, consistent, and high-throughput manner. This method could further be adapted into a novel 3D biofabrication approach to replicate compilated tissues and organs for a wide set of biomedical applications.Item Blood levels of lead and dental caries in permanent teeth(Wiley, 2020) Yepes, Juan F.; McCormick-Norris, Jayme; Vinson, LaQuia A.; Eckert, George J.; Hu, Howard; Wu, Yue; Jansen, Erica C.; Peterson, Karen E.; Téllez-Rojo, Martha M.; Martinez Mier, Esperanza Angeles; Pediatric Dentistry, School of DentistryObjectives: The purpose of this study was to determine whether there is an association between lead exposure within the ages of 1-4 years and dental caries in the permanent dentition between ages 9-17 among Mexican youth. Methods: Data were collected for the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort from a group of 490 children born and reared in Mexico City. Among ages 1-4 years, blood lead levels were measured in micrograms of lead per deciliter of blood (μg/dL) and the presence of caries in adolescence was determined using the International Caries and Detection and Assessment System (ICDAS). The relationship between blood levels of lead and decayed, missing, or filled surfaces (DMFS) was examined using negative binomial regression. Covariates were selected based on previous studies and included age, gender, socioeconomic status, oral hygiene, body mass index, and diet. The nonlinear relationship between lead and DMFS was examined using smoothing splines. Results: The mean overall blood lead level (BLL) was 4.83 μg/dL (S.D. of 2.2). The mean overall caries level (DMFS) was 4.1. No statistically significant association was found between early childhood blood lead levels and dental caries in adolescence. Conclusion: This study shows a lack of association between exposure to lead between the ages of 1-4 years of age and dental caries in permanent dentition later in life. Other covariates, such as age and sugar consumption, appeared to play a more prominent role in caries development.Item Effects of Granule Dendrobii on chronic atrophic gastritis induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats(Baishideng, 2022) Wu, Yue; Li, Yu; Jin, Xiao-Ming; Dai, Guan-Hai; Chen, Xuan; Tong, Ye-Ling; Ren, Ze-Ming; Chen, Yu; Xue, Xiao-Min; Wu, Ren-Zhao; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Dendrobium officinale is an herb of Traditional Chinese Medicine (TCM) commonly used for treating stomach diseases. One formula of Granule Dendrobii (GD) consists of Dendrobium officinale and American Ginseng (Radix Panacis quinquefolii), and is a potent TCM product in China. Whether treatment with GD can promote gastric acid secretion and alleviate gastric gland atrophy in chronic atrophic gastritis (CAG) requires verification. Aim: To determine the effect of GD treatment on CAG and its potential cellular mechanism. Methods: A CAG model was induced by feeding rats N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) for 12 wk. After oral administration of low, moderate, and high doses of GD in CAG rats for 8 wk, its effects on body weight, gastric mucosa histology, mucosal atrophy, intestinal metaplasia, immunohistochemical staining of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2, and hemoglobin and red blood cells were examined. Results: The body weights of MNNG-induced CAG model rats before treatment (143.5 ± 14.26 g) were significantly lower than that of healthy rats (220.2 ± 31.20 g, P < 0.01). At the 8th week of treatment, the body weights of rats in the low-, moderate-, and high-dose groups of GD (220.1 ± 36.62 g) were significantly higher than those in the untreated group (173.3 ± 28.09 g, all P < 0.01). The level of inflammation in gastric tissue of the high-dose group (1.68 ± 0.54) was significantly reduced (P < 0.01) compared with that of the untreated group (3.00 ± 0.00, P < 0.05). The number and thickness of gastric glands in the high-dose group (31.50 ± 6.07/mm, 306.4 ± 49.32 µm) were significantly higher than those in the untreated group (26.86 ± 6.41/mm, 244.3 ± 51.82 µm, respectively, P < 0.01 and P < 0.05), indicating improved atrophy of gastric mucosa. The areas of intestinal metaplasia were significantly lower in the high-dose group (1.74% ± 1.13%), medium-dose group (1.81% ± 0.66%) and low-dose group (2.36% ± 1.08%) than in the untreated group (3.91% ± 0.96%, all P < 0.01). The expression of PCNA in high-dose group was significantly reduced compared with that in untreated group (P < 0.01). Hemoglobin level in the high-dose group (145.3 ± 5.90 g/L), medium-dose group (139.3 ± 5.71 g/L) and low-dose group (137.5 ± 7.56 g/L) was markedly increased compared with the untreated group (132.1 ± 7.76 g/L; P < 0.01 or P < 0.05). Conclusion: Treatment with GD for 8 wk demonstrate that GD is effective in the treatment of CAG in the MNNG model by improving the histopathology of gastric mucosa, reversing gastric atrophy and intestinal metaplasia, and alleviating gastric inflammation.Item High-Throughput Acoustofluidic Fabrication of Tumor Spheroids(RSC, 2019) Chen, Bin; Wu, Yue; Ao, Zheng; Cai, Hongwei; Nunez, Asael; Liu, Yunhua; Foley, John; Nephew, Kenneth; Lu, Xiongbin; Guo, Feng; Medical and Molecular Genetics, School of MedicineThree-dimensional (3D) culture of multicellular spheroids, offering a desirable biomimetic microenvironment, is appropriate for recapitulating tissue cellular adhesive complexity and revealing a more realistic drug response. However, current 3D culture methods are suffering from low-throughput, poor controllability, intensive-labor, and variation in spheroid size, thus not ready for many high-throughput screening applications including drug discovery and toxicity testing. Herein, we developed a high-throughput multicellular spheroid fabrication method using acoustofluidics. By acoustically-assembling cancer cells with low-cost and disposable devices, our method can produce more than 12 000 multicellular aggregates within several minutes and allow us to transfer these aggregates into ultra-low attachment dishes for long-term culture. This method can generate more than 6000 tumor spheroids per operation, and reduce tumor spheroid formation time to one day. Our platform has advantages in forming spheroids with high throughput, short time, and long-term effectiveness, and is easy-to-operation. This acoustofluidic spheroid assembly method provides a simple and efficient way to produce large numbers of uniform-sized spheroids for biomedical applications in translational medicine, pharmaceutical industry and basic life science research.Item Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19(American Association for the Advancement of Science, 2023) Zhu, Bibo; Wei, Xiaoqin; Narasimhan, Harish; Qian, Wei; Zhang, Ruixuan; Cheon, In Su; Wu, Yue; Li, Chaofan; Jones, Russell G.; Kaplan, Mark H.; Vassallo, Robert A.; Braciale, Thomas J.; Somerville, Lindsay; Colca, Jerry R.; Pandey, Akhilesh; Jackson, Patrick E. H.; Mann, Barbara J.; Krawczyk, Connie M.; Sturek, Jeffrey M.; Sun, Jie; Microbiology and Immunology, School of MedicineThe relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602K (MSDC), dampened pulmonary inflammation and promoted lung recovery while concurrently reducing blood glucose levels and hyperlipidemia after viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized hypoxia-inducible factor-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development after SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.Item Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination(American Association for the Advancement of Science, 2022) Tang, Jinyi; Zeng, Cong; Cox, Thomas M.; Li, Chaofan; Son, Young Min; Cheon, In Su; Wu, Yue; Behl, Supriya; Taylor, Justin J.; Chakraborty, Rana; Johnson, Aaron J.; Schiavo, Dante N.; Utz, James P.; Reisenauer, Janani S.; Midthun, David E.; Mullon, John J.; Edell, Eric S.; Alameh, Mohamad G.; Borish, Larry; Teague, William G.; Kaplan, Mark H.; Weissman, Drew; Kern, Ryan; Hu, Haitao; Vassallo, Robert; Liu, Shan-Lu; Sun, Jie; Microbiology and Immunology, School of MedicineSARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19-vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2), and Omicron BA.1.1 in the BAL compared with COVID-19 convalescents despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during reinfection, but offer limited protection against breakthrough infection, especially by the Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by the Omicron sublineage and future VOCs.Item Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses(American Association for the Advancement of Science, 2021) Son, Young Min; Cheon, In Su; Wu, Yue; Li, Chaofan; Wang, Zheng; Gao, Xiaochen; Chen, Yao; Takahashi, Yoshimasa; Fu, Yang-Xin; Dent, Alexander L.; Kaplan, Mark H.; Taylor, Justin J.; Cui, Weiguo; Sun, Jie; Microbiology and Immunology, School of MedicineMuch remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.Item The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality(Elsevier, 2019-09-17) Li, Chaofan; Zhu, Bibo; Son, Young Min; Wang, Zheng; Jiang, Li; Xiang, Min; Ye, Zhenqing; Beckermann, Kathryn E.; Wu, Yue; Jenkins, James W.; Siska, Peter J.; Vincent, Benjamin G.; Prakash, Y. S.; Peikert, Tobias; Edelson, Brian T.; Taneja, Reshma; Kaplan, Mark H.; Rathmell, Jeffrey C.; Dong, Haidong; Hitosugi, Taro; Sun, Jie; Microbiology and Immunology, School of MedicineItem Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection(Cell Press, 2021) Zhu, Bibo; Wu, Yue; Huang, Su; Zhang, Ruixuan; Son, Young Min; Li, Chaofan; Cheon, In Su; Gao, Xiaochen; Wang, Min; Chen, Yao; Zhou, Xian; Nguyen, Quynh; Phan, Anthony T.; Behl, Supriya; Taketo, M. Mark; Mack, Matthias; Shapiro, Virginia S.; Zeng, Hu; Ebihara, Hideki; Mullon, John J.; Edell, Eric S.; Reisenauer, Janani S.; Demirel, Nadir; Kern, Ryan M.; Chakraborty, Rana; Cui, Weiguo; Kaplan, Mark H.; Zhou, Xiaobo; Goldrath, Ananda W.; Sun, Jie; Microbiology and Immunology, School of MedicineTissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/β-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of β-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, β-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted β-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This β-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by β-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.Item Yiwei decoction promotes apoptosis of gastric cancer cells through spleen-derived exosomes(Frontiers Media, 2023-06-01) Chen, Yingzhi; Li, Yu; Wu, Yue; Chen, Shiyong; Jin, Xiaoming; Chen, Xuan; Fei, Baoying; Xue, Xiaomin; Wu, Renzhao; Chai, Kequn; Anatomy, Cell Biology and Physiology, School of MedicineYiwei decoction (YWD) is a formula of traditional Chinese medicine (TCM) that is clinically effective for the prevention and treatment of gastric cancer recurrence and metastasis. According to the theory of TCM, YWD tonifies the body and strengthens the body’s resistance to gastric cancer recurrence and metastasis potentially via the immune regulation of the spleen. The aims of the present study were to investigate whether YWD-treated spleen-derived exosomes in rats inhibit the proliferation of tumor cells, to elucidate the anticancer effects of YWD, and to provide evidence supporting the use of YWD as a new clinical treatment for gastric cancer. Spleen-derived exosomes were obtained by ultracentrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot analysis. The location of the exosomes in tumor cells was then determined by immunofluorescence staining. After tumor cells were treated with different concentrations of exosomes, the effect of exosomes on cell proliferation was determined by cell counting kit 8 (CCK8) and colony formation assays. Tumor cell apoptosis was detected by flow cytometry. Particle analysis and western blot analysis identified the material extracted from spleen tissue supernatant as exosomes. Immunofluorescence staining showed that spleen-derived exosomes were taken up by HGC-27 cells, and the CCK8 assay confirmed that the relative tumor inhibition rate of YWD-treated spleen-derived exosomes in the 30 μg/mL reached 70.78% compared to control exosomes in the 30 μg/mL (p < 0.05). Compared to control exosomes in the 30 μg/mL, the colony formation assay indicated that YWD-treated spleen-derived exosomes in the 30 μg/mL colonies have decreased by 99.03% (p < 0.01). Moreover, flow cytometry analysis showed that treatment with YWD-treated exosomes in the 30 μg/mL increased the apoptosis rate to 43.27%, which was significantly higher than that of the control group in the 30 μg/mL (25.91%) (p < 0.05). In conclusion, spleen-derived exosomes from YWD-treated animals inhibit the proliferation of HGC-27 cells via inducing apoptosis, suggesting that spleen-derived exosomes are involved in mediating the antitumor effect of YWD. These results demonstrated a novel exosome-mediated anticancer effect of YWD as a TCM formula, thereby supporting the use of YWD-treated exosomes as a new approach for the clinical treatment of gastric cancer.