- Browse by Author
Browsing by Author "Wu, Xiangbing"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and Activation of PI3K/AKT-mTOR Signaling after Traumatic Spinal Injuries(Mary Ann Liebert, Inc., publishers, 2019-08-30) Walker, Chandler L.; Wu, Xiangbing; Liu, Nai-Kui; Xu, Xiao-Ming; Neurological Surgery, School of MedicineAlthough mechanisms involved in progression of cell death in spinal cord injury (SCI) have been studied extensively, few are clear targets for translation to clinical application. One of the best-understood mechanisms of cell survival in SCI is phosphatidylinositol-3-kinase (PI3K)/Akt and associated downstream signaling. Clear therapeutic efficacy of a phosphatase and tensin homologue (PTEN) inhibitor called bisperoxovanadium (bpV) has been shown in SCI, traumatic brain injury, stroke, and other neurological disease models in both neuroprotection and functional recovery. The present study aimed to elucidate mechanistic influences of bpV activity in neuronal survival in in vitro and in vivo models of SCI. Treatment with 100 nM bpV(pic) reduced cell death in a primary spinal neuron injury model (p < 0.05) in vitro, and upregulated both Akt and ribosomal protein S6 (pS6) activity (p < 0.05) compared with non-treated injured neurons. Pre-treatment of spinal neurons with a PI3K inhibitor, LY294002 or mammalian target of rapamycin (mTOR) inhibitor, rapamycin blocked bpV activation of Akt and ribosomal protein S6 activity, respectively. Treatment with bpV increased extracellular signal-related kinase (Erk) activity after scratch injury in vitro, and rapamycin reduced influence by bpV on Erk phosphorylation. After a cervical hemicontusive SCI, Akt phosphorylation decreased in total tissue via Western blot analysis (p < 0.01) as well as in penumbral ventral horn motor neurons throughout the first week post-injury (p < 0.05). Conversely, PTEN activity appeared to increase over this period. As observed in vitro, bpV also increased Erk activity post-SCI (p < 0.05). Our results suggest that PI3K/Akt signaling is the likely primary mechanism of bpV action in mediating neuroprotection in injured spinal neurons.Item Disrupting nNOS–PSD95 Interaction Improves Neurological and Cognitive Recoveries after Traumatic Brain Injury(Oxford University Press, 2020-06) Qu, Wenrui; Liu, Nai-Kui; Wu, Xiangbing; Wang, Ying; Xia, Yongzhi; Sun, Yan; Lai, Yvonne; Li, Rui; Shekhar, Anantha; Xu, Xiao-Ming; Psychiatry, School of MedicineExcessive activation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation plays a crucial role in the pathogenesis of traumatic brain injury (TBI). However, directly inhibiting NMDARs or nNOS produces adverse side effects because they play key physiological roles in the normal brain. Since interaction of nNOS–PSD95 is a key step in NMDAR-mediated excitotoxicity, we investigated whether disrupting nNOS–PSD95 interaction with ZL006, an inhibitor of nNOS–PSD95 interaction, attenuates NMDAR-mediated excitotoxicity. In cortical neuronal cultures, ZL006 treatment significantly reduced glutamate-induced neuronal death. In a mouse model of controlled cortical impact (CCI), administration of ZL006 (10 mg/kg, i.p.) at 30 min postinjury significantly inhibited nNOS–PSD95 interaction, reduced TUNEL- and phospho-p38-positive neurons in the motor cortex. ZL006 treatment also significantly reduced CCI-induced cortical expression of apoptotic markers active caspase-3, PARP-1, ratio of Bcl-2/Bax, and phosphorylated p38 MAPK (p-p38). Functionally, ZL006 treatment significantly improved neuroscores and sensorimotor performance, reduced somatosensory and motor deficits, reversed CCI-induced memory deficits, and attenuated cognitive impairment. Histologically, ZL006 treatment significantly reduced the brain lesion volume. These findings collectively suggest that blocking nNOS–PSD95 interaction represents an attractive strategy for ameliorating consequences of TBI and that its action is mediated via inhibiting neuronal apoptosis and p38 MAPK signaling.Item A Laser-Guided Spinal Cord Displacement Injury in Adult Mice(Mary Ann Liebert, 2019-02-01) Wu, Xiangbing; Qu, Wenrui; Bakare, Adewale A.; Zhang, Yi Ping; Fry, Collin M.E.; Shields, Lisa B.E.; Shields, Christopher B.; Xu, Xiao-Ming; Medicine, School of MedicineMouse models are unique for studying molecular mechanisms of neurotrauma because of the availability of various genetic modified mouse lines. For spinal cord injury (SCI) research, producing an accurate injury is essential, but it is challenging because of the small size of the mouse cord and the inconsistency of injury production. The Louisville Injury System Apparatus (LISA) impactor has been shown to produce precise contusive SCI in adult rats. Here, we examined whether the LISA impactor could be used to create accurate and graded contusive SCIs in mice. Adult C57BL/6 mice received a T10 laminectomy followed by 0.2, 0.5, and 0.8 mm displacement injuries, guided by a laser, from the dorsal surface of the spinal cord using the LISA impactor. Basso Mouse Scale (BMS), grid-walking, TreadScan, and Hargreaves analyses were performed for up to 6 weeks post-injury. All mice were euthanized at the 7th week, and the spinal cords were collected for histological analysis. Our results showed that the LISA impactor produced accurate and consistent contusive SCIs corresponding to mild, moderate, and severe injuries to the cord. The degree of injury severities could be readily determined by the BMS locomotor, grid-walking, and TreadScan gait assessments. The cutaneous hyperalgesia threshold was also significantly increased as the injury severity increased. The terminal lesion area and the spared white matter of the injury epicenter were strongly correlated with the injury severities. We conclude that the LISA device, guided by a laser, can produce reliable graded contusive SCIs in mice, resulting in severity-dependent behavioral and histopathological deficits.Item Neuroprotective Ferulic Acid (FA)-Glycol Chitosan (GC) Nanoparticles for Functional Restoration of Traumatically Injured Spinal Cord(Elsevier B.V., 2014-02) Wu, Wei; Lee, Seung-Young; Wu, Xiangbing; Tyler, Jacqueline Y.; Wang, He; Ouyang, Zheng; Park, Kinam; Xu, Xiao-Ming; Cheng, Ji-Xin; Department of Neurological Surgery, IU School of MedicineAn urgent unmet need exists for early-stage treatment of spinal cord injury (SCI). Currently methylprednisolone is the only therapeutic agent used in clinics, for which the efficacy is controversial and the side effect is well-known. We demonstrated functional restoration of injured spinal cord by self-assembled nanoparticles composed of ferulic acid modified glycol chitosan (FA-GC). Chitosan and ferulic acid are strong neuroprotective agents but their systemic delivery is difficult. Our data has shown a prolonged circulation time of the FA-GC nanoparticles allowing for effective delivery of both chitosan and ferulic acid to the injured site. Furthermore, the nanoparticles were found both in the gray matter and white matter. The in vitro tests demonstrated that nanoparticles protected primary neurons from glutamate-induced excitotoxicity. Using a spinal cord contusion injury model, significant recovery in locomotor function was observed in rats that were intravenously administered nanoparticles at 2 h post injury, as compared to non-improvement by methylprednisolone administration. Histological analysis revealed that FA-GC treatment significantly preserved axons and myelin and also reduced cavity volume, astrogliosis, and inflammatory response at the lesion site. No obvious adverse effects of nanoparticles to other organs were found. The restorative effect of FA-GC presents a promising potential for treating human SCIs.Item Restoring mitochondrial cardiolipin homeostasis reduces cell death and promotes recovery after spinal cord injury(Springer Nature, 2022-12-20) Liu, Nai-Kui; Deng, Ling-Xiao; Wang, Miao; Lu, Qing-Bo; Wang, Chunyan; Wu, Xiangbing; Wu, Wei; Wang, Ying; Qu, Wenrui; Han, Qi; Xia, Yongzhi; Ravenscraft, Baylen; Li, Jin-Lian; You, Si-Wei; Wipf, Peter; Han, Xianlin; Xu, Xiao-Ming; Neurological Surgery, School of MedicineAlterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.Item RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation(Springer, 2016) Wu, Xiangbing; Walker, Chandler L.; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B.; Parish, Jonathan M.; Xu, Xiao-Ming; Department of Neurological Surgery, IU School of MedicineActivation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.Item A Tissue Displacement-based Contusive Spinal Cord Injury Model in Mice(JoVE, 2017-06-18) Wu, Xiangbing; Zhang, Yi Ping; Qu, Wenrui; Shields, Lisa B. E.; Shields, Christopher B.; Xu, Xiao-Ming; Neurological Surgery, School of MedicineProducing a consistent and reproducible contusive spinal cord injury (SCI) is critical to minimizing behavioral and histological variabilities between experimental animals. Several contusive SCI models have been developed to produce injuries using different mechanisms. The severity of the SCI is based on the height that a given weight is dropped, the injury force, or the spinal cord displacement. In the current study, we introduce a novel mouse contusive SCI device, the Louisville Injury System Apparatus (LISA) impactor, which can create a displacement-based SCI with high injury velocity and accuracy. This system utilizes laser distance sensors combined with advanced software to produce graded and highly-reproducible injuries. We performed a contusive SCI at the 10th thoracic vertebral (T10) level in mice to demonstrate the step-by-step procedure. The model can also be applied to the cervical and lumbar spinal levels.Item Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury(American Society for Clinical Investigation, 2022-06-22) Wu, Wei; Nguyen, Tyler; Ordaz, Josue D.; Zhang, Yiping; Liu, Nai-Kui; Hu, Xinhua; Liu, Yuxiang; Ping, Xingjie; Han, Qi; Wu, Xiangbing; Qu, Wenrui; Gao, Sujuan; Shields, Christopher B.; Jin, Xiaoming; Xu, Xiao-Ming; Neurological Surgery, School of MedicineUnderstanding the reorganization of neural circuits spared after spinal cord injury in the motor cortex and spinal cord would provide insights for developing therapeutics. Using optogenetic mapping, we demonstrated a transhemispheric recruitment of neural circuits in the contralateral cortical M1/M2 area to improve the impaired forelimb function after a cervical 5 right-sided hemisection in mice, a model mimicking the human Brown-Séquard syndrome. This cortical reorganization can be elicited by a selective cortical optogenetic neuromodulation paradigm. Areas of whisker, jaw, and neck, together with the rostral forelimb area, on the motor cortex ipsilateral to the lesion were engaged to control the ipsilesional forelimb in both stimulation and nonstimulation groups 8 weeks following injury. However, significant functional benefits were only seen in the stimulation group. Using anterograde tracing, we further revealed a robust sprouting of the intact corticospinal tract in the spinal cord of those animals receiving optogenetic stimulation. The intraspinal corticospinal axonal sprouting correlated with the forelimb functional recovery. Thus, specific neuromodulation of the cortical neural circuits induced massive neural reorganization both in the motor cortex and spinal cord, constructing an alternative motor pathway in restoring impaired forelimb function.