- Browse by Author
Browsing by Author "Wojcieszek, Joanne"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Genetic Testing for Parkinson Disease: Are We Ready?(American Academy of Neurology, 2021-02) Cook, Lola; Schulze, Jeanine; Kopil, Catherine; Hastings, Tara; Naito, Anna; Wojcieszek, Joanne; Payne, Katelyn; Alcalay, Roy N.; Klein, Christine; Saunders-Pullman, Rachel; Simuni, Tatyana; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicinePurpose of review: With the advent of precision medicine and demand for genomic testing information, we may question whether it is time to offer genetic testing to our patients with Parkinson disease (PD). This review updates the current genetic landscape of PD, describes what genetic testing may offer, provides strategies for evaluating whom to test, and provides resources for the busy clinician. Recent findings: Patients with PD and their relatives, in various settings, have expressed an interest in learning their PD genetic status; however, physicians may be hesitant to widely offer testing due to the perceived low clinical utility of PD genetic test results. The rise of clinical trials available for patients with gene-specific PD and emerging information on genotype-phenotype correlations are starting to shift this discussion about testing. Summary: By learning more about the various genetic testing options for PD and utility of results for patients and their care, clinicians may become more comfortable with widespread PD genetic testing in the research and clinical setting.Item NEURAL CORRELATES AND PROGRESSION OF SACCADE IMPAIRMENT IN PREMANIFEST AND MANIFEST HUNTINGTON DISEASE(2010-10-15) Rupp, Jason Douglas; Foroud, Tatiana; Conneally, P. Michael; Kareken, David A.; Saykin, Andrew J.; Wojcieszek, JoanneHuntington disease (HD) is an autosomal dominant disorder characterized by progressive decline of motor, cognitive, and behavioral function. Saccades (rapid, gaze-shifting eye movements) are affected before a clinical diagnosis of HD is certain (i.e. during the premanifest period of the disease). Fundamental questions remain regarding the neural substrates of abnormal saccades and the course of premanifest disease. This work addressed these questions using magnetic resonance imaging (MRI) and a longitudinal study of premanifest disease progression. Gray matter atrophy is a characteristic of HD that can be reliably detected during the premanifest period, but it is not known how such changes influence saccadic behavior. We evaluated antisaccades (AS) and memory guided saccades (MG) in premanifest and manifest HD, then tested for associations between impaired saccadic measures and gray matter atrophy in brain regions involved in these saccadic tasks. The results suggest that slowed vertical AS responses indicate cortical and subcortical atrophy and may be a noninvasive marker of atrophic changes in the brain. We also investigated the brain changes that underlie AS impairment using an event-related AS design with functional MRI (fMRI). We found that, in premanifest and manifest HD, blood oxygenation level dependent (BOLD) response was abnormally absent in the pre-supplementary motor area and dorsal anterior cingulate cortex following incorrect AS responses. These results are the first to suggest that abnormalities in an error-related response network underlie early disease-related saccadic changes, and they emphasize the important influence of regions outside the striatum and frontal cortex in disease manifestations. Though saccadic abnormalities have been repeatedly observed cross sectionally, they have not yet been studied longitudinally in premanifest HD. We found different patterns of decline; for some measures the rate of decline increased as individuals approached onset, while for others the rate was constant throughout the premanifest period. These results establish the effectiveness of saccadic measures in tracking premanifest disease progression, and argue for their use in clinical trials. Together, these studies establish the utility of saccade measures as a marker of HD neurodegeneration and suggest that they would be a valuable component of batteries evaluating the efficacy of neuroprotective therapies.Item A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease(2017-01) McGarry, Andrew; McDermott, Michael; Kieburtz, Karl; de Blieck, Elisabeth A.; Beal, Flint; Marder, Karen; Ross, Christopher; Shoulson, Ira; Gibert, Peter; Mallonee, William M.; Guttman, Mark; Wojcieszek, Joanne; Kumar, Rajeev; LeDoux, Mark S.; Jenkins, Mary; Rosas, H. Diana; Nance, Martha; Biglan, Kevin; Como, Peter; Dubinsky, Richard M.; Shannon, Kathleen M.; O'Suilleabhain, Padraig; Chou, Kelvin; Walker, Francis; Martin, Wayne; Wheelock, Vicki L.; McCusker, Elizabeth; Jankovic, Joseph; Singer, Carlos; Sanchez-Ramos, Juan; Scott, Burton; Suchowersky, Oksana; Factor, Stewart A.; Higgins, Donald S., Jr.; Molho, Eric; Revilla, Fredy; Caviness, John N.; Friedman, Joseph H.; Perlmutter, Joel S.; Feigin, Andrew; Anderson, Karen; Rodriguez, Ramon; McFarland, Nikolaus R.; Margolis, Russell L.; Farbman, Eric S.; Raymond, Lynn A.; Suski, Valerie; Kostyk, Sandra; Colcher, Amy; Seeberger, Lauren; Epping, Eric; Esmail, Sherali; Diaz, Nancy; Fung, Wai Lun Alan; Diamond, Alan; Frank, Samuel; Hanna, Philip; Hermanowicz, Neal; Dure, Leon S.; Cudkowicz, Merit; Department of Neurology, School of MedicineObjective: To test the hypothesis that chronic treatment of early-stage Huntington disease (HD) with high-dose coenzyme Q10 (CoQ) will slow the progressive functional decline of HD. Methods: We performed a multicenter randomized, double-blind, placebo-controlled trial. Patients with early-stage HD (n = 609) were enrolled at 48 sites in the United States, Canada, and Australia from 2008 to 2012. Patients were randomized to receive either CoQ 2,400 mg/d or matching placebo, then followed for 60 months. The primary outcome variable was the change from baseline to month 60 in Total Functional Capacity score (for patients who survived) combined with time to death (for patients who died) analyzed using a joint-rank analysis approach. Results: An interim analysis for futility revealed a conditional power of <5% for the primary analysis, prompting premature conclusion in July 2014. No statistically significant differences were seen between treatment groups for the primary or secondary outcome measures. CoQ was generally safe and well-tolerated throughout the study. Conclusions: These data do not justify use of CoQ as a treatment to slow functional decline in HD.Item Relevance of genetic testing in the gene-targeted trial era: the Rostock Parkinson's disease study(Oxford University Press, 2024) Westenberger, Ana; Skrahina, Volha; Usnich, Tatiana; Beetz, Christian; Vollstedt, Eva-Juliane; Laabs, Björn-Hergen; Paul, Jefri J.; Curado, Filipa; Skobalj, Snezana; Gaber, Hanaa; Olmedillas, Maria; Bogdanovic, Xenia; Ameziane, Najim; Schell, Nathalie; Aasly, Jan Olav; Afshari, Mitra; Agarwal, Pinky; Aldred, Jason; Alonso-Frech, Fernando; Anderson, Roderick; Araújo, Rui; Arkadir, David; Avenali, Micol; Balal, Mehmet; Benizri, Sandra; Bette, Sagari; Bhatia, Perminder; Bonello, Michael; Braga-Neto, Pedro; Brauneis, Sarah; Costa Cardoso, Francisco Eduardo; Cavallieri, Francesco; Classen, Joseph; Cohen, Lisa; Coletta, Della; Crosiers, David; Cullufi, Paskal; Dashtipour, Khashayar; Demirkiran, Meltem; de Carvalho Aguiar, Patricia; De Rosa, Anna; Djaldetti, Ruth; Dogu, Okan; Dos Santos Ghilardi, Maria Gabriela; Eggers, Carsten; Elibol, Bulent; Ellenbogen, Aaron; Ertan, Sibel; Fabiani, Giorgio; Falkenburger, Björn H.; Farrow, Simon; Fay-Karmon, Tsviya; Ferencz, Gerald J.; Fonoff, Erich Talamoni; Fragoso, Yara Dadalti; Genç, Gençer; Gorospe, Arantza; Grandas, Francisco; Gruber, Doreen; Gudesblatt, Mark; Gurevich, Tanya; Hagenah, Johann; Hanagasi, Hasmet A.; Hassin-Baer, Sharon; Hauser, Robert A.; Hernández-Vara, Jorge; Herting, Birgit; Hinson, Vanessa K.; Hogg, Elliot; Hu, Michele T.; Hummelgen, Eduardo; Hussey, Kelly; Infante, Jon; Isaacson, Stuart H.; Jauma, Serge; Koleva-Alazeh, Natalia; Kuhlenbäumer, Gregor; Kühn, Andrea; Litvan, Irene; López-Manzanares, Lydia; Luxmore, McKenzie; Manandhar, Sujeena; Marcaud, Veronique; Markopoulou, Katerina; Marras, Connie; McKenzie, Mark; Matarazzo, Michele; Merello, Marcelo; Mollenhauer, Brit; Morgan, John C.; Mullin, Stephen; Musacchio, Thomas; Myers, Bennett; Negrotti, Anna; Nieves, Anette; Nitsan, Zeev; Oskooilar, Nader; Öztop-Çakmak, Özgür; Pal, Gian; Pavese, Nicola; Percesepe, Antonio; Piccoli, Tommaso; Pinto de Souza, Carolina; Prell, Tino; Pulera, Mark; Raw, Jason; Reetz, Kathrin; Reiner, Johnathan; Rosenberg, David; Ruiz-Lopez, Marta; Ruiz Martinez, Javier; Sammler, Esther; Santos-Lobato, Bruno Lopes; Saunders-Pullman, Rachel; Schlesinger, Ilana; Schofield, Christine M.; Schumacher-Schuh, Artur F.; Scott, Burton; Sesar, Ángel; Shafer, Stuart J.; Sheridan, Ray; Silverdale, Monty; Sophia, Rani; Spitz, Mariana; Stathis, Pantelis; Stocchi, Fabrizio; Tagliati, Michele; Tai, Yen F.; Terwecoren, Annelies; Thonke, Sven; Tönges, Lars; Toschi, Giulia; Tumas, Vitor; Urban, Peter Paul; Vacca, Laura; Vandenberghe, Wim; Valente, Enza Maria; Valzania, Franco; Vela-Desojo, Lydia; Weill, Caroline; Weise, David; Wojcieszek, Joanne; Wolz, Martin; Yahalom, Gilad; Yalcin-Cakmakli, Gul; Zittel, Simone; Zlotnik, Yair; Kandaswamy, Krishna K.; Balck, Alexander; Hanssen, Henrike; Borsche, Max; Lange, Lara M.; Csoti, Ilona; Lohmann, Katja; Kasten, Meike; Brüggemann, Norbert; Rolfs, Arndt; Klein, Christine; Bauer, Peter; Neurology, School of MedicineEstimates of the spectrum and frequency of pathogenic variants in Parkinson's disease (PD) in different populations are currently limited and biased. Furthermore, although therapeutic modification of several genetic targets has reached the clinical trial stage, a major obstacle in conducting these trials is that PD patients are largely unaware of their genetic status and, therefore, cannot be recruited. Expanding the number of investigated PD-related genes and including genes related to disorders with overlapping clinical features in large, well-phenotyped PD patient groups is a prerequisite for capturing the full variant spectrum underlying PD and for stratifying and prioritizing patients for gene-targeted clinical trials. The Rostock Parkinson's disease (ROPAD) study is an observational clinical study aiming to determine the frequency and spectrum of genetic variants contributing to PD in a large international cohort. We investigated variants in 50 genes with either an established relevance for PD or possible phenotypic overlap in a group of 12 580 PD patients from 16 countries [62.3% male; 92.0% White; 27.0% positive family history (FH+), median age at onset (AAO) 59 years] using a next-generation sequencing panel. Altogether, in 1864 (14.8%) ROPAD participants (58.1% male; 91.0% White, 35.5% FH+, median AAO 55 years), a PD-relevant genetic test (PDGT) was positive based on GBA1 risk variants (10.4%) or pathogenic/likely pathogenic variants in LRRK2 (2.9%), PRKN (0.9%), SNCA (0.2%) or PINK1 (0.1%) or a combination of two genetic findings in two genes (∼0.2%). Of note, the adjusted positive PDGT fraction, i.e. the fraction of positive PDGTs per country weighted by the fraction of the population of the world that they represent, was 14.5%. Positive PDGTs were identified in 19.9% of patients with an AAO ≤ 50 years, in 19.5% of patients with FH+ and in 26.9% with an AAO ≤ 50 years and FH+. In comparison to the idiopathic PD group (6846 patients with benign variants), the positive PDGT group had a significantly lower AAO (4 years, P = 9 × 10-34). The probability of a positive PDGT decreased by 3% with every additional AAO year (P = 1 × 10-35). Female patients were 22% more likely to have a positive PDGT (P = 3 × 10-4), and for individuals with FH+ this likelihood was 55% higher (P = 1 × 10-14). About 0.8% of the ROPAD participants had positive genetic testing findings in parkinsonism-, dystonia/dyskinesia- or dementia-related genes. In the emerging era of gene-targeted PD clinical trials, our finding that ∼15% of patients harbour potentially actionable genetic variants offers an important prospect to affected individuals and their families and underlines the need for genetic testing in PD patients. Thus, the insights from the ROPAD study allow for data-driven, differential genetic counselling across the spectrum of different AAOs and family histories and promote a possible policy change in the application of genetic testing as a routine part of patient evaluation and care in PD.