NEURAL CORRELATES AND PROGRESSION OF SACCADE IMPAIRMENT IN PREMANIFEST AND MANIFEST HUNTINGTON DISEASE

Date
2010-10-15
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2010
Department
Department of Medical & Molecular Genetics
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Huntington disease (HD) is an autosomal dominant disorder characterized by progressive decline of motor, cognitive, and behavioral function. Saccades (rapid, gaze-shifting eye movements) are affected before a clinical diagnosis of HD is certain (i.e. during the premanifest period of the disease). Fundamental questions remain regarding the neural substrates of abnormal saccades and the course of premanifest disease. This work addressed these questions using magnetic resonance imaging (MRI) and a longitudinal study of premanifest disease progression.

Gray matter atrophy is a characteristic of HD that can be reliably detected during the premanifest period, but it is not known how such changes influence saccadic behavior. We evaluated antisaccades (AS) and memory guided saccades (MG) in premanifest and manifest HD, then tested for associations between impaired saccadic measures and gray matter atrophy in brain regions involved in these saccadic tasks. The results suggest that slowed vertical AS responses indicate cortical and subcortical atrophy and may be a noninvasive marker of atrophic changes in the brain.

We also investigated the brain changes that underlie AS impairment using an event-related AS design with functional MRI (fMRI). We found that, in premanifest and manifest HD, blood oxygenation level dependent (BOLD) response was abnormally absent in the pre-supplementary motor area and dorsal anterior cingulate cortex following incorrect AS responses. These results are the first to suggest that abnormalities in an error-related response network underlie early disease-related saccadic changes, and they emphasize the important influence of regions outside the striatum and frontal cortex in disease manifestations.

Though saccadic abnormalities have been repeatedly observed cross sectionally, they have not yet been studied longitudinally in premanifest HD. We found different patterns of decline; for some measures the rate of decline increased as individuals approached onset, while for others the rate was constant throughout the premanifest period. These results establish the effectiveness of saccadic measures in tracking premanifest disease progression, and argue for their use in clinical trials.

Together, these studies establish the utility of saccade measures as a marker of HD neurodegeneration and suggest that they would be a valuable component of batteries evaluating the efficacy of neuroprotective therapies.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}