- Browse by Author
Browsing by Author "Wang, Zheng"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Distributed Consensus-based Weight Design for Cooperative Spectrum Sensing(IEEE, 2015-01) Zhang, Wenlin; Guo, Yi; Liu, Hongbo; Chen, Yingying; Wang, Zheng; Mitola, Joseph III; Department of Computer Information and Graphics Technology, School of Engineering and TechnologyIn this paper, we study the distributed spectrum sensing in cognitive radio networks. Existing distributed consensus-based fusion algorithms only ensure equal gain combining of local measurements, whose performance may be incomparable to various centralized soft combining schemes. Motivated by this fact, we consider practical channel conditions and link failures, and develop new weighted soft measurement combining without a centralized fusion center. Following the measurement by its energy detector, each secondary user exchanges its own measurement statistics with its local one-hop neighbors, and chooses the information exchanging rate according to the measurement channel condition, e.g., the signal-to-noise ratio (SNR). We rigorously prove the convergence of the new consensus algorithm, and show all secondary users hold the same global decision statistics from the weighted soft measurement combining throughout the network. We also provide distributed optimal weight design under uncorrelated measurement channels. The convergence rate of the consensus iteration is given under the assumption that each communication link has an independent probability to fail, and the upper bound of the iteration number of the $ \epsilon$ -convergence is explicitly given as a function of system parameters. Simulation results show significant improvement of the sensing performance compared to existing consensus-based approaches, and the performance of the distributed weighted design is comparable to the centralized weighted combining scheme.Item PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae(Science Immunology, 2019-06-14) Wang, Zheng; Wang, Shaohua; Goplen, Nick P.; Li, Chaofan; Cheon, In Su; Dai, Qigang; Huang, Su; Shan, Jinjun; Ma, Chaoyu; Ye, Zhenqing; Xiang, Min; Limper, Andrew H.; Porquera, Eva-Carmona; Kohlmeier, Jacob E.; Kaplan, Mark H.; Zhang, Nu; Johnson, Aaron J.; Vassallo, Robert; Sun, Jie; Microbiology and Immunology, School of MedicineCD8+ tissue-resident memory T (TRM) cells provide frontline immunity in mucosal tissues. The mechanisms regulating CD8+ TRM maintenance, heterogeneity, and protective and pathological functions are largely elusive. Here, we identify a population of CD8+ TRM cells that is maintained by major histocompatibility complex class I (MHC-I) signaling, and CD80 and CD86 costimulation after acute influenza infection. These TRM cells have both exhausted-like phenotypes and memory features and provide heterologous immunity against secondary infection. PD-L1 blockade after the resolution of primary infection promotes the rejuvenation of these exhausted-like TRM cells, restoring protective immunity at the cost of promoting postinfection inflammatory and fibrotic sequelae. Thus, PD-1 serves to limit the pathogenic capacity of exhausted-like TRM cells at the memory phase. Our data indicate that TRM cell exhaustion is the result of a tissue-specific cellular adaptation that balances fibrotic sequelae with protective immunity.Item Supplementary Material to “Distributed Consensus-based Weight Design for Cooperative Spectrum Sensing”(IEEE, 2015-01) Zhang, Wenlin; Guo, Yi; Liu, Hongbo; Chen, Yingying; Wang, Zheng; Mitola, Joseph III; Department of Computer Information and Graphics Technology, School of Engineering and TechnologyAbstract—This material is a supplement to the paper “Distributed Consensus-based Weight Design for Cooperative Spectrum Sensing”. Section 1 offers related literature review on cooperative spectrum sensing and consensus algorithms. Section 2 presents related notations and models of the consensus-based graph theory. Section 3 offers further analysis of the proposed spectrum sensing scheme including detection threshold settings and convergence properties in terms of detection performance. Section 4 presents the proofs for the convergence of the proposed consensus algorithm, and discusses the convergence of the proposed algorithm under random link failure network models. Section 5 shows additional simulation results.Item Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses(American Association for the Advancement of Science, 2021) Son, Young Min; Cheon, In Su; Wu, Yue; Li, Chaofan; Wang, Zheng; Gao, Xiaochen; Chen, Yao; Takahashi, Yoshimasa; Fu, Yang-Xin; Dent, Alexander L.; Kaplan, Mark H.; Taylor, Justin J.; Cui, Weiguo; Sun, Jie; Microbiology and Immunology, School of MedicineMuch remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.Item The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality(Elsevier, 2019-09-17) Li, Chaofan; Zhu, Bibo; Son, Young Min; Wang, Zheng; Jiang, Li; Xiang, Min; Ye, Zhenqing; Beckermann, Kathryn E.; Wu, Yue; Jenkins, James W.; Siska, Peter J.; Vincent, Benjamin G.; Prakash, Y. S.; Peikert, Tobias; Edelson, Brian T.; Taneja, Reshma; Kaplan, Mark H.; Rathmell, Jeffrey C.; Dong, Haidong; Hitosugi, Taro; Sun, Jie; Microbiology and Immunology, School of Medicine