- Browse by Author
Browsing by Author "Udriştoiu, Ştefan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessment of Deep Learning Methods for Differentiating Autoimmune Disorders in Ultrasound Images(Medical University Publishing House Craiova, 2021) Vasile, Corina Maria; Udriştoiu, Anca Loredana; Ghenea, Alice Elena; Padureanu, Vlad; Udriştoiu, Ştefan; Gruionu, Lucian Gheorghe; Gruionu, Gabriel; Iacob, Andreea Valentina; Popescu, Mihaela; Medicine, School of MedicineAt present, deep learning becomes an important tool in medical image analysis, with good performance in diagnosing, pattern detection, and segmentation. Ultrasound imaging offers an easy and rapid method to detect and diagnose thyroid disorders. With the help of a computer-aided diagnosis (CAD) system based on deep learning, we have the possibility of real-time and non-invasive diagnosing of thyroidal US images. This paper proposed a study based on deep learning with transfer learning for differentiating the thyroidal ultrasound images using image pixels and diagnosis labels as inputs. We trained, assessed, and compared two pre-trained models (VGG-19 and Inception v3) using a dataset of ultrasound images consisting of 2 types of thyroid ultrasound images: autoimmune and normal. The training dataset consisted of 615 thyroid ultrasound images, from which 415 images were diagnosed as autoimmune, and 200 images as normal. The models were assessed using a dataset of 120 images, from which 80 images were diagnosed as autoimmune, and 40 images diagnosed as normal. The two deep learning models obtained very good results, as follows: the pre-trained VGG-19 model obtained 98.60% for the overall test accuracy with an overall specificity of 98.94% and overall sensitivity of 97.97%, while the Inception v3 model obtained 96.4% for the overall test accuracy with an overall specificity of 95.58% and overall sensitivity of 95.58.Item Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model(PLOS, 2021-06-28) Udriştoiu, Anca Loredana; Cazacu, Irina Mihaela; Gruionu, Lucian Gheorghe; Gruionu, Gabriel; Iacob, Andreea Valentina; Burtea, Daniela Elena; Ungureanu, Bogdan Silviu; Costache, Mădălin Ionuţ; Constantin, Alina; Popescu, Carmen Florina; Udriştoiu, Ştefan; Săftoiu, Adrian; Medicine, School of MedicineDifferential diagnosis of focal pancreatic masses is based on endoscopic ultrasound (EUS) guided fine needle aspiration biopsy (EUS-FNA/FNB). Several imaging techniques (i.e. gray-scale, color Doppler, contrast-enhancement and elastography) are used for differential diagnosis. However, diagnosis remains highly operator dependent. To address this problem, machine learning algorithms (MLA) can generate an automatic computer-aided diagnosis (CAD) by analyzing a large number of clinical images in real-time. We aimed to develop a MLA to characterize focal pancreatic masses during the EUS procedure. The study included 65 patients with focal pancreatic masses, with 20 EUS images selected from each patient (grayscale, color Doppler, arterial and venous phase contrast-enhancement and elastography). Images were classified based on cytopathology exam as: chronic pseudotumoral pancreatitis (CPP), neuroendocrine tumor (PNET) and ductal adenocarcinoma (PDAC). The MLA is based on a deep learning method which combines convolutional (CNN) and long short-term memory (LSTM) neural networks. 2688 images were used for training and 672 images for testing the deep learning models. The CNN was developed to identify the discriminative features of images, while a LSTM neural network was used to extract the dependencies between images. The model predicted the clinical diagnosis with an area under curve index of 0.98 and an overall accuracy of 98.26%. The negative (NPV) and positive (PPV) predictive values and the corresponding 95% confidential intervals (CI) are 96.7%, [94.5, 98.9] and 98.1%, [96.81, 99.4] for PDAC, 96.5%, [94.1, 98.8], and 99.7%, [99.3, 100] for CPP, and 98.9%, [97.5, 100] and 98.3%, [97.1, 99.4] for PNET. Following further validation on a independent test cohort, this method could become an efficient CAD tool to differentiate focal pancreatic masses in real-time.