- Browse by Author
Browsing by Author "Tian, Fuqiang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Divergence of stable isotopes in tap water across China(SpringerNature, 2017-03-02) Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang; Tie, Qiang; Wang, Lixin; Liu, Yaling; Shi, Chunxiang; Department of Earth Sciences, School of ScienceStable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presents typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale.Item Spatial and temporal variations of tap water 17O-excess in China(Elsevier, 2019-09) Tian, Chao; Wang, Lixin; Tian, Fuqiang; Zhao, Sihan; Jiao, Wenzhe; Earth Sciences, School of ScienceCompared to tap water δ2H and δ18O, tap water 17O-excess preserves additional information about source water dynamics. In this study, we provide the first report of 17O-excess variations of tap water across China (652 samples). Annual 17O-excess of tap waters at the national scale did not show obvious spatial pattern, and was almost unaffected by local environmental factors except in the Qinghai-Tibet Plateau region with a strong latitudinal trend. The mean 17O-excess values in different seasons were not significantly different. The isotopic compositions of most of the tap waters at the annual and seasonal scale were likely influenced by the equilibrium fractionation effect (δ′18O-δ′17O slope ranged from 0.5277 to 0.5301), except for the northwest region in the summer (slope = 0.5264) influenced by kinetic fractionation associated with re-evaporation effect. Based on the information of tap water source distribution, site aridity index and the known precipitation δ18O values, a subset of the tap water can be considered as precipitation proxy. Different from the obvious spatial characteristics of precipitation δ18O, precipitation 17O-excess did not show a clear spatial pattern. But it revealed much detailed precipitation formation mechanisms related to different climate regions and geographical conditions. The lower 17O-excess values of the precipitation-sourced tap waters were caused by kinetic fractionation associated with supersaturation process in snow or glacier formation and re-evaporation effect in some arid regions. The higher 17O-excess values of the precipitation-sourced tap waters in the inland were caused by continental moisture recycling, while likely caused by multiple factors in the southeast coastal region including short transport from ocean source and the humid local environment. Overall, this study provides a unique tap water 17O-excess dataset across China, and probes the precipitation formation mechanisms using tap waters.Item Stable Isotope Composition of River Waters across the World(MDPI, 2019) Nan, Yi; Tian, Fuqiang; Hu, Hongchang; Wang, Lixin; Zhao, Sihan; Earth Sciences, School of ScienceStable isotopes of O and H in water are meaningful indicators of hydrological and ecological patterns and processes. The Global Network of Isotopes in Precipitation (GNIP) and the Global Network of Isotopes in Rivers (GNIR) are the two most important global databases of isotopes in precipitation and rivers. While the data of GNIP is almost globally distributed, GNIR has an incomplete spatial coverage, which hinders the utilization of river isotopes to study global hydrological cycle. To fill this knowledge gap, this study supplements GNIR and provides a river isotope database with global-coverage by the meta-analysis method, i.e., collecting 17015 additional data points from 215 published articles. Based on the newly compiled database, we find that (1) the relationship between δ18O and δ2H in river waters exhibits an asymmetric imbricate feature, and bifurcation can be observed in Africa and North America, indicating the effect of evaporation on isotopes; (2) multiple regression analysis with geographical factors indicates that spatial patterns of river isotopes are quite different across regions; (3) multiple regression with geographical and meteorological factors can well predict the river isotopes, which provides regional regression models with r2 of 0.50 to 0.89, and the best predictors in different regions are different. This work presents a global map of river isotopes and establishes a benchmark for further research on isotopes in rivers.Item Triple isotope variations of monthly tap water in China(Nature Publishing Group, 2020-10-12) Tian, Chao; Wang, Lixin; Jiao, Wenzhe; Li, Fadong; Tian, Fuqiang; Zhao, Sihan; Earth Sciences, School of ScienceTap water isotopic compositions could potentially record information on local climate and water management practices. A new water isotope tracer 17O-excess became available in recent years providing additional information of the various hydrological processes. Detailed data records of tap water 17O-excess have not been reported. In this report, monthly tap water samples (n = 652) were collected from December 2014 to November 2015 from 92 collection sites across China. The isotopic composition (δ2H, δ18O, and δ17O) of tap water was analyzed by a Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique and two second-order isotopic variables (d-excess and 17O-excess) were calculated. The geographic location information of the 92 collection sites including latitude, longitude, and elevation were also provided in this dataset. This report presents national-scale tap water isotope dataset at monthly time scale. Researchers and water resource managers who focus on the tap water issues could use them to probe the water source and water management strategies at large spatial scales.