- Browse by Author
Browsing by Author "Thacker, David L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing(Wiley, 2021) Lima, John J.; Thomas, Cameron D.; Barbarino, Julia; Desta, Zeruesenay; Van Driest, Sara L.; El Rouby, Nihal; Johnson, Julie A.; Cavallari, Larisa H.; Shakhnovich, Valentina; Thacker, David L.; Scott, Stuart A.; Schwab, Matthias; Uppugunduri, Chakradhara Rao S.; Formea, Christine M.; Franciosi, James P.; Sangkuhl, Katrin; Gaedigk, Andrea; Klein, Teri E.; Gammal, Roseann S.; Furuta, Takahisa; Medicine, School of MedicineProton pump inhibitors (PPIs) are widely used for acid suppression in the treatment and prevention of many conditions, including gastroesophageal reflux disease, gastric and duodenal ulcers, erosive esophagitis, Helicobacter pylori infection, and pathological hypersecretory conditions. Most PPIs are metabolized primarily by cytochrome P450 2C19 (CYP2C19) into inactive metabolites, and CYP2C19 genotype has been linked to PPI exposure, efficacy, and adverse effects. We summarize the evidence from the literature and provide therapeutic recommendations for PPI prescribing based on CYP2C19 genotype (updates at www.cpicpgx.org). The potential benefits of using CYP2C19 genotype data to guide PPI therapy include (i) identifying patients with genotypes predictive of lower plasma exposure and prescribing them a higher dose that will increase the likelihood of efficacy, and (ii) identifying patients on chronic therapy with genotypes predictive of higher plasma exposure and prescribing them a decreased dose to minimize the risk of toxicity that is associated with long-term PPI use, particularly at higher plasma concentrations.Item Stereoselective pharmacokinetics of stable isotope (+/-)-[13C]-pantoprazole: Implications for a rapid screening phenotype test of CYP2C19 activity(Wiley, 2011-11) Thacker, David L.; Modak, Anil; Nguyen, Phuong D.; Flockhart, David A.; Desta, Zeruesenay; Department of Medicine, IU School of MedicineAIMS: We have previously shown that the (±)-[(13) C]-pantoprazole breath test is a promising noninvasive probe of CYP2C19 activity. As part of that trial, plasma, breath test indices and CYP2C19 (*2, *3, and *17) genotype were collected. Here, we examined whether [(13) C]-pantoprazole exhibits enantioselective pharmacokinetics and whether this enantioselectivity is correlated with indices of breath test. METHODS: Plasma (-)- and (+)-[(13) C]-pantoprazole that were measured using a chiral HPLC were compared between CYP2C19 genotypes and correlated with breath test indices. RESULTS: The AUC( 0-∞) of (+)-[(13) C]-pantoprazole in PM (*2/*2, n = 4) was 10.1- and 5.6-fold higher that EM (*1/*1or *17, n = 10) and IM (*1/*2or *3, n = 10) of CYP2C19, respectively (P < 0.001). The AUC( 0-∞) of (-)-[(13) C]-pantoprazole only significantly differed between PMs and EMs (1.98-fold; P = 0.05). The AUC( 0-∞) ratio of (+)-/(-)-[(13) C]-pantoprazole was 3.45, 0.77, and 0.67 in PM, IM, and EM genotypes, respectively. Breath test index, delta over baseline show significant correlation with AUC( 0-∞) of (+)-[(13) C]-pantoprazole (Pearson's r = 0.62; P < 0.001). CONCLUSIONS: [(13) C]-pantoprazole exhibits enantioselective elimination. (+)-[(13) C]-pantoprazole is more dependent on CYP2C19 metabolic status and may serve as a more attractive probe of CYP2C19 activity than (-)-[(13) C]-pantoprazole or the racemic mixture.