- Browse by Author
Browsing by Author "Taheri, Saman"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A Bi-Level Data-Driven Framework for Fault-Detection and Diagnosis of HVAC Systems feature explainability(Elsevier, 2022-07) Movahed, Paria; Taheri, Saman; Razban, Ali; Mechanical Engineering, School of Engineering and TechnologyMachine learning methods have lately received considerable interest for fault detection diagnostic (FDD) analysis of heating, ventilation, and air conditioning (HVAC) systems due to their high detection accuracy. Meanwhile, HVAC malfunctions are regarded as rare occurrences, hence normal operating data samples are much more accessible than data samples in faulty and malfunctioning conditions. The dominating frequency of normal operation in HVAC datasets have also led to heavily biased classification algorithms within the literature. Moreover, the focus of previous literature has been on increasing accuracy of the models while this leads to a high number of false positives (misleading alarms) in the system. To enhance the performance of diagnostic procedures and fill the mentioned gaps, this study proposes a novel data-driven framework. A bi-level machine learning framework is developed for diagnosing faults in air handling units and rooftop units based on principal component analysis (PCA), time series anomaly detection, and random forest (RF). It is shown that PCA can reduce the dataset dimension with one principal component accounting for 95% of data variance. Also, the random forest could classify the faults with 89% precision for single zone AHU, 85% precision for RTU, and 79% for multi-zone AHU.Item Developing a method to calculate leaks in a compressed air line using time series pressure measurements(Elsevier, 2022-07) Jafarian, Alireza; Taheri, Saman; Daniel, Ebin; Razban, Ali; Mechanical Engineering, School of Engineering and TechnologyCompressed air is a powerful source of stored energy and is use in a variety of applications varying from painting to pressing in industrial manufacturing. One of the common problems in this system is air leakage. Air leaks forming within the compressed air piping network, act as continuous consumers and reduce the pressure within the pipes. Therefore, the air compressors will have to work harder to compensate for the losses in the pressure and preventing inefficiently of pneumatic devices. This will all cumulatively impact the manufacturer considerably when it comes to energy consumption and profits. There are multiple methods of air leak detection and accounting. The methods are usually conducted in non-production hours, the time that main air consumption within the piping is air leaks. In this paper, a model that includes both the production and non-production hours when accounting for the leaks is presented. It is observed that there is 50.33% increase in the energy losses, and 82.90% increase in the demand losses that are estimated when the effects of the air leaks are observed continuously and in real time. A real time monitoring system can provide an in-depth understanding of the compressed air system and its efficiency. The main goal of this paper is to find a nonintrusive way to calculate the amount of air as well as energy lost due to these leaks using time series pressure measurements.Item Electricity Demand Time Series Forecasting Based on Empirical Mode Decomposition and Long Short-Term Memory(Tech Science Press, 2021) Taheri, Saman; Talebjedi, Behnam; Laukkanen, Timo; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyLoad forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable of learning temporal dependencies, has been extensively integrated into load forecasting in recent years. To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm breaks down a load time-series data into several sub-series called intrinsic mode functions (IMFs). For each of the derived IMFs, a different LSTM model is trained. Finally, the outputs of all the individual LSTM learners are fed to a meta-learner to provide an aggregated output for the energy demand prediction. The suggested methodology is applied to the California ISO dataset to demonstrate its applicability. Additionally, we compare the output of the proposed algorithm to a single LSTM and two state-of-the-art data-driven models, specifically XGBoost, and logistic regression (LR). The proposed hybrid model outperforms single LSTM, LR, and XGBoost by, 35.19%, 54%, and 49.25% for short-term, and 36.3%, 34.04%, 32% for long-term prediction in mean absolute percentage error, respectively.Item Energy Optimization of Heating, Ventilation, and Air Conditioning Systems(2024-05) Taheri, Saman; Razban, Ali; Chen, Jie; Du, Xiaoping; Chien, Stanley Yung-PingThe energy consumption in the building sector is responsible for over 36% of the total energy consumption across the globe. Of all the energy-consumer devices within a building, heating, ventilation, and air conditioning (HVAC) systems account for over 50% of the total energy consumed. This makes HVAC systems a source of preventable and unexplored energy waste that can be tackled by incorporating intelligent operations. Since its inception, model predictive control (MPC) has been one of the prospective solutions for HVAC management systems to reduce both costs and energy usage. Additionally, MPC is becoming increasingly practical as the processing capacity of building automation systems increases and a large quantity of monitored building data becomes available. MPC also provides the potential to improve the energy efficiency of HVAC systems via its capacity to consider limitations, to predict disruptions, and to factor in multiple competing goals such as interior thermal comfort and building energy consumption. In this regard, the opening chapter delves into the evolving landscape of the HVAC industry. It explores how rapid advancements in technology, growing concerns about climate change, and the ever-present need for energy efficiency are driving innovation. The chapter highlights the shift from static to dynamic HVAC systems, where buildings become sensor rich networks enabling advanced control strategies like Model Predictive Control (MPC) and Fault Detection and Diagnosis (FDD). we first provide a comprehensive review of the literature concerning the application of MPC in HVAC systems. Detailed discussions of modeling approaches and optimization algorithms are included. Numerous design aspects such as prediction horizon, time step, and cost function, that impact MPC performance are discussed in detail. The technical characteristics, advantages, and disadvantages of various types of modeling software are discussed. Next, a thorough, real-world case study for the design and implementation of a generalized data-collection and control architecture for HVAC systems in an educational building is proposed. The proposed MPC method adds a supervisory control layer on top of the current BMS by delivering temperature setpoints to the legacy controller. This means that the technique may be used to a variety of current HVAC systems in different commercial buildings. In addition, the utilization of remote web services to host the cloud-based architecture significantly minimizes the amount of technical expertise generally necessary to create such systems. In addition, we provide significant lessons learned from the installation process and we list indicative prices, therefore minimizing uncertainty for other researchers and promoting the use of comparable solutions. Chapter two focuses on Fault Detection and Diagnosis (FDD), a critical component of maintaining optimal HVAC performance and minimizing energy waste. HVAC systems are susceptible to malfunctions over time, leading to increased energy consumption and higher maintenance costs. FDD techniques play a vital role in identifying and diagnosing these faults early on, allowing for timely repairs and preventing further deterioration. This chapter introduces a novel bi-level machine learning framework for diagnosing faults in air handling units. This framework addresses key challenges associated with FDD. A bi-level machine learning framework is developed for diagnosing faults in air handling units (AHUs) and rooftop units (RTUs) based on principal component analysis (PCA), time series anomaly detection, and random forest (RF). By proposing this framework, we address three persistent challenges in this field: (I) minimizing false positives; (II) accounting for data imbalance; and (III) normal condition monitoring of equipment. It is shown that PCA can reduce the dataset dimension with one principal component accounting for 95% of data variance. Also, the random forest could classify the faults with 89% precision for single-zone AHU, 85% precision for RTU, and 79% for multi-zone AHU. Chapter three tackles the practical implementation of Model Predictive Control (MPC) in a real-world commercial building setting. It details the development, implementation, and cost analysis of a universally applicable cloud-based MPC framework for HVAC control systems. This chapter offers valuable insights into the feasibility and effectiveness of MPC in achieving energy efficiency goals while maintaining occupant comfort. The chapter delves into the hardware and software components used for data acquisition and MPC implemen tation. It emphasizes the use of cloud-based microservices to ensure seamless integration with existing building management systems, promoting wider adoption of this advanced control strategy. Three innovative control strategies are presented and evaluated in this chapter. The chapter presents compelling evidence for the effectiveness of these strategies, showcasing significant energy savings of up to 19.21%. Chapter four focuses on Occupancy-based Demand Controlled Ventilation (DCV) as a means to optimize indoor air quality (IAQ) while minimizing energy consumption. This chapter highlights the growing importance of IAQ in the wake of the COVID-19 pandemic and its impact on occupant health and well-being. Current ventilation standards often rely on static occupancy assumptions, which can lead to over-ventilation during unoccupied pe riods and wasted energy. This chapter proposes a dynamic occupant behavior model using machine learning algorithms to predict CO2 concentrations within buildings. The chapter investigates the performance of various machine learning algorithms, ultimately identify ing a Multilayer Perceptron (MLP) as the most effective in predicting CO2 levels under dynamic occupancy conditions. This model allows for real-time modulation of ventilation rates, ensuring adequate IAQ while minimizing energy consumption. The concluding chapter presents experimental findings on the effectiveness of adaptive Variable Frequency Drive (VFD) control strategies in optimizing HVAC energy consump tion. Variable Frequency Drives allow for adjusting the speed of electric motors, including those powering HVAC fans. This chapter explores the potential of using real-time occu pancy predictions to optimize VFD operation. The proposed control strategy demonstrates impressive energy savings, achieving a 51.4% reduction in HVAC fan energy consumption while adhering to ASHRAE IAQ standards. This chapter paves the way for occupant-centric ventilation strategies that prioritize both human health and energy efficiency. These results underscore the potential of predictive control systems to transform building operations to ward greater sustainability and efficiency. The chapter acknowledges the need for further validation through extended monitoring and analysis. In summary, this thesis contributes significantly to the advancement of smart building technologies by proposing practical frameworks for implementing advanced control strategies in HVAC systems. The findings presented here offer valuable insights for building designers, engineers, facility managers, and policymakers interested in creating sustainable, energy efficient, and occupant-centric buildings. The developed frameworks have the potential to be applied across a wide range of building types and climatic conditions, promoting broader adoption of smart building technologies and contributing to a more sustainable built envi ronment.Item Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation(Elsevier, 2021-11) Taheri, Saman; Razban, Ali; Mechanical and Energy Engineering, School of Engineering and TechnologyThere have been increasing concerns over the air quality inside buildings as high levels of bio-effluents can cause nausea, dizziness, headaches, and fatigue to the people working in those spaces. First published in 2004 as Standard 62.1, ASHRAE Standard 62.2-2019 requires highly occupied spaces to implement heating, ventilation, and air conditioning (HVAC) that can dilute contaminants produced by occupants. In this regard, occupant-centric ventilation control has been regarded as an effective practice to maintain a satisfactory indoor air quality (IAQ) when dealing with highly variable occupancy environments. However, few established models in current literature and practice consider dynamic occupancy behavior and adaptive IAQ control. To address this gap, a dynamic indoor CO2 model is constructed using machine learning algorithms to forecast CO2 concentrations across a range of forecasting horizons. Herein, we tuned and compared six state-of-the-art learning algorithms—including Support Vector Machine, AdaBoost, Random Forest, Gradient Boosting, Logistic Regression, and Multilayer Perceptron. The algorithms’ performances are validated using CO2 and historical meteorological data collected from a campus classroom with a variable occupancy rate. Simulation results showed that Multilayer Perceptron can strongly predict the volatile CO2 behavior and also outperforms other algorithms in terms of accuracy. Furthermore, a control strategy capable of modeling and detecting dynamic patterns of CO2 level is utilized to modulate the ventilation rate in real-time and also reduce the energy consumption. The proposed controller reduced the HVAC fan’s energy consumption by 51.4% and provided ventilation as needed per the ASHRAE standards.Item A novel probabilistic regression model for electrical peak demand estimate of commercial and manufacturing buildings(Elsevier, 2022-02) Taheri, Saman; Razban, Ali; Mechanical Engineering, School of Engineering and TechnologyDue to the high cost of electricity in commercial and industrial sectors, demand forecast models have gained increasing attention. However, there are two unresolved issues: (1) Models are not adaptable when exposed to previously unknown data (2) The value of regression methods vs. state-of-the-art machine learning models has not been made apparent before. This study’s goal is to develop probabilistic demand estimation models. We propose a probabilistic Bayesian regression framework that can not only estimate future demands with high accuracy but also be updated once new information is available. By applying the proposed algorithm to two real-world case studies (commercial and manufacturing), we show a 40.3% and 30.8% improvement in terms of mean absolute error for the two cases. Moreover, the proposed technique outperforms powerful machine learning approaches, including support vector machine by 10.39%, random forest by 6.17%, and multilayer perceptron by 9.14% in terms of mean absolute percentage error.Item Pandemic-Aware Day-Ahead Demand Forecasting Using Ensemble Learning(IEEE, 2022) Arjomandi-Nezhad, Ali; Ahmadi, Amirhossein; Taheri, Saman; Fotuhi-Firuzabad, Mahmud; Moeini-Aghtaie, Moein; Lehtonen, Matti; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyElectricity demand forecast is necessary for power systems’ operation scheduling and management. However, power consumption is uncertain and depends on several factors. Moreover, since the onset of covid-19, the electricity consumption pattern went through significant changes across the globe, which made the forecasting demand more challenging. This is mainly due to the fact that pandemic-driven restrictions changed people’s lifestyles and work activities. This calls for new forecasting algorithms to more effectively handle these conditions. In this paper, ensemble-based machine learning models are utilized for this task. The lockdown temporal policies are added to the feature set in order to make the model capable of correcting itself in pandemic situations and enhance data quality for the forecasting task. Several ensemble-based machine learning models are examined for the short-term country-level demand prediction model. Besides, the quantile random forest regression is implemented for a probabilistic point of view. For case studies, the models are trained for predicting Germany’s country-level demand. The results indicate that ensemble models, especially boosting and bagging-boosting models, are capable of accurate country-level demand forecast. Besides, the majority of these models are robust against missing the pandemic policy data. However, utilizing the pandemic policy data as features increases the forecasting accuracy during the pandemic situation significantly. Furthermore, the probabilistic quantile regression demonstrated high accuracy for the aforementioned case study.Item Reliability-based energy scheduling of active buildings subject to renewable energy and demand uncertainty(Elsevier, 2022-02-01) Taheri, Saman; Akbari, Amin; Ghahremani, Bahareh; Razban, Ali; Mechanical and Energy Engineering, School of Engineering and TechnologyThe increasing penetration of renewable energy sources (RESs) and the inherent volatility in demand profiles have added another layer of complexity to the management of energy resources in modern active buildings (ABs). Yet, three challenges have been neglected in previous studies: (1) There is no universal systematic method for identifying an AB’s general stochastic model; (2) No research has been conducted on the reliability-based design optimization for ABs’ energy supply; (3) Uncertain sources are not categorized based on their importance in regard to the optimization problem. This article aims to solve these challenges by proposing a probabilistic-based optimization approach for solving the reliability issue of energy supply in buildings with on-site renewable energy sources (RESs), taking into account the uncertainty associated with photovoltaic (PV) production and demand fluctuations. The suggested framework seeks to reduce the overall costs of the system while ensuring high energy supply reliability. The proposed methodology, when applied to a real-world case study, demonstrates a 60% increase in reliability of energy supply as compared to typical deterministic methodologies.